Top 25 Repeated JEE Mains Questions to Score 250+: Physics, Chemistry & Maths

Top 25 Repeated JEE Mains Questions to Score 250+: Physics, Chemistry & Maths

Shivani PooniaUpdated on 16 Jan 2026, 05:48 PM IST

Getting 250+ marks in JEE Main isn't just about studying everything, it also includes studying wisely. One of the smartest study techniques is to perfectly master the JEE Main repeated questions all subjects that can be asked. For the last 15 years or so, JEE Main exam has appeared to follow a very distinct repetition pattern across Physics, Chemistry, and Mathematics; that is, concepts are asked again and again with slight numerical or conceptual changes.

LiveJEE Main Admit Card 2026 LIVE: NTA to issue exam hall ticket shortly at jeemain.nta.nic.in; timings,guidelinesJan 16, 2026 | 5:28 PM IST

The JEE Main 2026 Session 1 examination schedule has been announced. The BE and BTech (Paper 1) exams will be conducted on January 21, 22, 23, 24, and 28, 2026. The Paper 2A and Paper 2B examinations for BArch and BPlanning are scheduled for January 29, 2026.

Read More

This Story also Contains

  1. High-Scoring Chapters of JEE Main to Score 250+
  2. Top Highest Repeated Concepts of the Last Five Years
  3. Top 25 Repeated JEE Mains Questions to Score 250+
Top 25 Repeated JEE Mains Questions to Score 250+: Physics, Chemistry & Maths
Top 25 Repeated JEE Mains Questions to Score 250+ Marks

This article focuses on the Top 25 Repeated JEE Mains Questions that have been appearing consistently in previous years and have a critical role in scoring above 250 marks.

High-Scoring Chapters of JEE Main to Score 250+

To score 250+ marks in JEE Main 2026, focusing on JEE Main PYQs is important and the chapters that carry high weightage and are frequently repeated in the exam. These chapters afford the maximum possible marks with minimum investment of time and rely heavily on the question patterns from previous years.

Maths High Weightage Chapter

Chapter Name

Percentage Distribution

Co-ordinate geometry

13.11%

Integral Calculus

10.43%

Limit, continuity and differentiability

10.28%

Complex numbers and quadratic equations

7.04%

Matrices and Determinants

7.04%

Three Dimensional Geometry6.91%

Physics High Weightage Chapter

Chapter Name

Percentage Distribution

Optics

7.54%

Properties of Solids and Liquids

7.01%

Electrostatics

7.41%

Current Electricity

6.85%

Electromagnetic Induction and Alternating Currents

6.23%

Magnetic Effects of Current and Magnetism5.86%

Chemistry High Weightage Chapters

Chapter Name

Percentage Distribution

Organic Compounds containing Oxygen

6.85%

Co-ordination Compounds

5.92%

p- Block Elements

5.30%

Redox Reaction and Electrochemistry

5.27%

Hydrocarbons

5.21%

Chemical Bonding and Molecular Structure4.69%

Top Highest Repeated Concepts of the Last Five Years

Physics Top Highest Repeated Concepts

Concept Name

Total Number of Questions from last five years

De-broglie wavelength of an electron

38

Logic Gates

36

Parallel Grouping of Resistance

33

Projectile Motion

33

Nature of Electromagnetic Waves31
Hooke’s law29

Chemistry Top Highest Repeated Concepts

Concept Name

Total Number of Questions from last five years

Concentration Terms

30

Mole Concept and Molar Mass

27

Stoichiometry, Stoichiometric Calculations and Limiting Reagent

25

Applications of CFT

25

Magnetic Moment (On the Basis of VBT)24

Maths Top Highest Repeated Concepts

Concept Name

Total Number of Questions from last five years

Linear Differential Equation

79

Area Bounded by Two Curves

73

Dispersion (Variance and Standard Deviation)

60

Vector (or Cross) Product of Two Vectors

54

General Term of Binomial Expansion

45

Definite Integration44

Top 25 Repeated JEE Mains Questions to Score 250+

Question 1: Let the Mean and Variance of five observations $x_1=1, x_2=3, x_3=a, x_4=7$ and $x_5=b, a>b$, be 5 and 10, respectively. Then the Variance of the observations $n+x_n, n=1,2, \ldots \ldots . .5$ is
1) 17
2) 16.4
3) 17.4
4) (correct) 16

Solution:

Calculate the mean:

$\begin{aligned}
& 5=\frac{1+3+a+7+b}{5} \\
& \Rightarrow a+b=14 \\
& \frac{1+9+a^2+49-b^2}{5}-(5)^2=10 \\
& a^2+b^2=116 \\
& \Rightarrow a=10, b=4
\end{aligned}$


New observations: $2,5,13,11,9$

$\begin{aligned}
& \text { Var }=\frac{4+26+169+121+81}{5}-64 \\
& \text { Var }=80.2-64 \\
& \text { Var } \approx 16
\end{aligned}$
Hence, the answer is option (4).

Question 2: If in the expansion of $(1+x)^p(1-x)^q$, the coefficients of $x$ and $x^2$ are 1 and -2 , respectively, then $\mathbf{p}^2+\mathbf{q}^2$ is equal to:
1) 8
2) 18
3) (correct) 13
4) 20

Solution:

We have:

$
(1+x)^p(1-x)^q = \left({}^p C_0 + {}^p C_1 x + {}^p C_2 x^2 + \ldots\right)\left({}^q C_0 - {}^q C_1 x + {}^q C_2 x^2 - \ldots\right)
$

To find the coefficient of $x$, we consider terms whose degrees add up to 1:

Coefficient of $x = {}^p C_0 \cdot ( - {}^q C_1 ) + {}^p C_1 \cdot {}^q C_0 = -{}^q C_1 + {}^p C_1 = 1
$

Given that $p - q = 1$, so:

$
p = q + 1
$

Now for the coefficient of $x^2$, the relevant terms are:

Coefficient of $x^2 = {}^p C_0 \cdot {}^q C_2 - {}^p C_1 \cdot {}^q C_1 + {}^p C_2 \cdot {}^q C_0 = -2
$

Now express binomial coefficients using formulas:

$
{}^q C_2 = \frac{q(q - 1)}{2}, \quad {}^p C_2 = \frac{p(p - 1)}{2}, \quad {}^p C_1 = p, \quad {}^q C_1 = q
$

Substitute these into the expression:

$
\frac{q(q - 1)}{2} - pq + \frac{p(p - 1)}{2} = -2
$

Multiply the entire equation by 2 to eliminate denominators:

$
q(q - 1) - 2pq + p(p - 1) = -4
$

Simplify:

$
q^2 - q - 2pq + p^2 - p = -4
$

Now substitute $p = q + 1$ into the equation:

$
q^2 - q - 2q(q + 1) + (q + 1)^2 - (q + 1) = -4
$

Expand:

$
q^2 - q - 2q^2 - 2q + q^2 + 2q + 1 - q - 1 = -4
$

Simplify:

$
(q^2 - 2q^2 + q^2) + (-q - 2q + 2q - q) + (1 - 1) = -4
\Rightarrow 0 - 2q = -4 \Rightarrow q = 2
$

Now:

$
p = q + 1 = 3
$

Therefore:

$
p^2 + q^2 = 3^2 + 2^2 = 9 + 4 = 13
$

Hence, the correct answer is option (3).

Question 3: A box contains 10 pens, of which 3 are defective. A sample of 2 pens is drawn at random, and let $X$ denote the number of defective pens. Then the variance of $X$ is
1) $\frac{11}{15}$
2) (correct) $\frac{28}{75}$
3) $\frac{2}{15}$
4) $\frac{3}{5}$

Solution:

xx = 0x = 1x = 2
$\mathrm{P}(\mathrm{x})$$\frac{{ }^7 \mathrm{C}_2}{{{ }^{10} \mathrm{C}_2}}$$\frac{{ }^{7} \mathrm{C}_1 \ ^{3}C_1 }{^{10} \mathrm{C}_2}$$\frac{{ }^3 \mathrm{C}_2}{{ }^{10} \mathrm{C}_2}$
Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

$\begin{aligned} & \mu=\Sigma x_i P\left(x_i\right)=0+\frac{7}{15}+\frac{2}{15}=\frac{3}{5} \\ & \text { Variance }(x)=\Sigma P_i\left(x_i-\mu\right)^2=\frac{28}{75}\end{aligned}$

Hence, the correct answer is option (2).

Question 4: If the area of the larger portion bounded between the curves $x^2+y^2=25$ and $y=|x-1|$ is $\frac{1}{4}(b \pi+c), \mathrm{b}, \mathrm{c} \in \mathbb{N}$, then $\mathrm{b}+\mathrm{c}$ is equal to $\_\_\_\_$ .

Solution :

Given the circles:

$
x^2 + y^2 = 5
$

and

$
x^2 + (x-1)^2 = 25
$

Solve for $x$ in the second equation:

$
x^2 + (x-1)^2 = 25 \implies x=4
$

Also, from the first circle and $y = -x + 1$,

$
x^2 + (-x + 1)^2 = 5 \implies x = -3
$

Calculate the required area $A$:

$
A = 25 \pi - \int_{-3}^{4} \sqrt{25 - x^2} \, dx + \frac{1}{2} \times 4 \times 4 + \frac{1}{2} \times 3 \times 3
$

Evaluate the integral:

$
A = 25 \pi + \frac{25}{2} - \left[ \frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \frac{x}{5} \right]_{-3}^{4}
$

Calculate the terms inside the bracket:

$
A = 25 \pi + \frac{25}{2} - \left[ 6 + \frac{25}{2} \sin^{-1} \frac{4}{5} + 6 + \frac{25}{2} \sin^{-1} \frac{3}{5} \right]
$

Simplify the expression:

$
A = 25 \pi + \frac{1}{2} - \frac{25}{2} \cdot \frac{\pi}{2}
$

Further simplification yields:

$
A = \frac{75 \pi}{4} + \frac{1}{2}
$

Rewrite as:

$
A = \frac{1}{4} (75 \pi + 2)
$

Identify $b=75$ and $c=2$, then

$
b + c = 75 + 2 = 77
$

Hence, the answer is 77.

Question 5: Let $y=y(x)$ be the solution of the differential equation $\left(x y-5 x^2 \sqrt{1+x^2}\right) d x+\left(1+x^2\right) d y=0, y(0)=0$. Then $y(\sqrt{3})$ is equal to
1) (correct) $\frac{5 \sqrt{3}}{2}$

2) $\sqrt{\frac{14}{3}}$

3) $2 \sqrt{2}$

4) $\sqrt{\frac{15}{2}}$

Solution:

We are given:
$
(1 + x^2) \frac{dy}{dx} + x y = 5x^2 \sqrt{1 + x^2}
$

Divide both sides by $ 1 + x^2 $:
$
\frac{dy}{dx} + \frac{x}{1 + x^2} y = \frac{5x^2}{\sqrt{1 + x^2}}
$

This is a linear differential equation. The integrating factor is:
$
\text{I.F.} = e^{\int \frac{x}{1 + x^2} dx} = e^{\frac{1}{2} \ln(1 + x^2)} = \sqrt{1 + x^2}
$

Multiply both sides of the differential equation by the I.F.:
$
\sqrt{1 + x^2} \cdot \frac{dy}{dx} + \frac{x \sqrt{1 + x^2}}{1 + x^2} y = \frac{5x^2}{\sqrt{1 + x^2}} \cdot \sqrt{1 + x^2}
$

Left-hand side becomes:
$
\frac{d}{dx} \left( y \sqrt{1 + x^2} \right) = 5x^2
$

Integrate both sides:
$
y \sqrt{1 + x^2} = \int 5x^2 dx = \frac{5x^3}{3} + C
$

Use initial condition $ y(0) = 0 $:
$
0 = \frac{5 \cdot 0^3}{3 \cdot \sqrt{1 + 0^2}} + C \Rightarrow C = 0
$

So,
$
y = \frac{5x^3}{3 \sqrt{1 + x^2}}
$

Now evaluate $ y(\sqrt{3}) $:
$
y(\sqrt{3}) = \frac{5 (\sqrt{3})^3}{3 \sqrt{1 + 3}} = \frac{5 \cdot 3 \sqrt{3}}{3 \cdot 2} = \frac{5 \sqrt{3}}{2}
$

$
y(\sqrt{3}) = \frac{5 \sqrt{3}}{2}
$

Hence, the answer is Option (1).

Question 6: If for the solution curve $y=f(x)$ of the differential equation $\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^2}$, $\mathbf{x} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \mathrm{f}\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10}$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is equal to:
1) $\frac{9 \sqrt{3}+3}{10(4+\sqrt{3})}$
2) $\frac{\sqrt{3}+1}{10(4+\sqrt{3})}$
3) $\frac{5-\sqrt{3}}{2 \sqrt{2}}$
4) (correct) $\frac{4-\sqrt{2}}{14}$

Solution:

Linear Differential Equation -

The linear differential equations are those in which the variable and its derivative occur only in the first degree.

An equation of the form

$
\frac{d y}{d x}+P(x) \cdot y=Q(x)
$

Where P(x) and Q(x) are functions of x only or constant is called a linear equation of the first order.
$
\Rightarrow \quad \mathrm{ye}^{\int P(x) d x}=\int Q(x) e^{\int P(x) d x} d x+C
$

Which is the required solution to the given differential equation.

The term $\mathrm{e}^{\int \mathrm{P}(\mathrm{x}) \mathrm{dx}}$, which converts the left-hand expression of the equation into a perfect differential, is called an Integrating factor (IF).

Thus, we remember the solution of the above equation as
$
y(\mathrm{IF})=\int Q(\mathrm{IF}) d x+C
$

Question 7: The magnetic field of an E.M. wave is given by

$\overrightarrow{\mathrm{B}}=\left(\frac{\sqrt{3}}{2} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}\right) 30 \sin \left[\omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right)\right] \text { (S.I. Units) }$

The corresponding electric field in SI units is :

1) $\overrightarrow{\mathrm{E}}=\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right) 30 \mathrm{c} \sin \left[\omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right)\right]$

2) $\overrightarrow{\mathrm{E}}=\left(\frac{3}{4} \hat{\mathrm{i}}+\frac{1}{4} \hat{\mathrm{j}}\right) 30 \mathrm{c} \cos \left[\omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right)\right]$

3) $\overrightarrow{\mathrm{E}}=\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right) 30 \mathrm{c} \sin \left[\omega\left(\mathrm{t}+\frac{\mathrm{z}}{\mathrm{c}}\right)\right]$

4) $\overrightarrow{\mathrm{E}}=\left(\frac{\sqrt{3}}{2} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}\right) 30 \mathrm{c} \sin \left[\omega\left(\mathrm{t}+\frac{\mathrm{z}}{\mathrm{c}}\right)\right]$

Solution:

$\begin{aligned} & \vec{B}=\left(\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}\right) 30 \sin \left[\omega\left(t-\frac{z}{c}\right)\right] \\ & \vec{E}=\vec{B} \times \overrightarrow{\mathrm{c}} \text { and } E_0 = B_0 c \\ & \hat{E} = \left(\frac{\sqrt{3}}{2}(-\hat{j})+\frac{1}{2} \hat{i}\right) \\ & E_0=30 c \\ & \vec{E}=\left(\frac{1}{2} \hat{i}-\frac{\sqrt{3}}{2} \hat{j}\right) 30 c \sin \left[\omega\left(t-\frac{z}{c}\right)\right]\end{aligned}$

Hence, the answer is the option (1).

Question 8: Xg of nitrobenzene on nitration gave 4.2 g of m -dinitrobenzene. $\mathrm{X}=$ $\_\_\_\_$ g. (nearest integer)
[Given : molar mass (in gmol $^{-1}$ ) $\mathrm{C}: 12, \mathrm{H}: 1, \mathrm{O}: 16, \mathrm{~N}: 14$ ]

Solution:

Given

X g nitrobenzene

4.2 g m -dinitrobenzene.

MM of nitrobenzene = 123

MM of dinitrobenzene = 168

$\begin{aligned} & \frac{X}{123}=\frac{4.2}{168} \\ & X=3.075 \mathrm{~g}\end{aligned}$

Hence, the answer is 3.075

Question 9: The homoleptic and octahedral complex of $\mathrm{Co}^{+2}$ and $\mathrm{H}_2 \mathrm{O}$ has $\_\_\_\_$ unparied electrons(s) in the $t_{2 g}$ set of orbitals.

Solution:

$\left(\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right)^{+2} \rightarrow \mathrm{CO}^{+2} \rightarrow 3 \mathrm{~d}^7$


unpaired electrons in $t_{2 g}$ is = (1)

Hence, the answer is (1).

Question 10: The number of paramagnetic species from the following is

$\begin{aligned}
& {\left[\mathrm{Ni}(\mathrm{CN})_4\right]^{2-},\left[\mathrm{Ni}(\mathrm{CO})_4\right],\left[\mathrm{NiCl}_4\right]^{2-}} \\
& {\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{4--},\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+}} \\
& {\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{3-} \text { and }\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}}
\end{aligned}$

Solution:

$
\left(\mathrm{NiCl}_4\right)^{-2} \rightarrow \mathrm{Ni}^{+2} \rightarrow 3 \mathrm{~d}^8
$

$\mathrm{Cl}^{+} \rightarrow$ Weak field layered

paramagnetic(Unpaired $\mathrm{e}^{-}=2$ )

$\left(\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right)^{2+} \rightarrow \mathrm{Cu}^{+2} \rightarrow 3 \mathrm{~d}^9$

Unpaired $\mathrm{e}^{-}=1$, paramagnetic

$
\left(\mathrm{Fe}(\mathrm{CN})_6\right)^{-3} \rightarrow \mathrm{Fe}^{+3} \rightarrow 3 \mathrm{~d}^5
$


CN-is strong field ligand

so Unpaired e- = 1
so paramagnetic

$
\left.\left(\mathrm{Fe}_{\left(\mathrm{H}_2 \mathrm{O}\right.}\right)_6\right)^{+2} \rightarrow \mathrm{Fe}^{+2} \rightarrow 3 \mathrm{~d}^6
$

$\mathrm{H}_2 \mathrm{O}$ is weak field ligand

Unpaired e- = 4 Paramagnetic

Hence, the answer is (4).

Question 11: Given below are two statements: one is labeled as Assertion (A) and the other is labeled as Reason(R).
Assertion (A): Ketoses give Seliwanoff's test faster than Aldoses.
Reason (R): Ketoses undergo -elimination followed by the formation of furfural.
In the light of the above statements, choose the correct answer from the options given below :

1) (A) is false but (R) is true

2) (correct) (A) is true but (R) is false

3) Both (A) and (R) are true but (R) is not the correct explanation of (A)

4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Solution:

Seliwanoff’s test – Test to differentiate between ketose and aldose.
In this keto hexose is more rapidly dehydrated to form $5-$hydroxy methyl furfural when heated in an acidic medium which on condensation with resorcinol, results brown colored complex.

Hence, the answer is the option (2).

Question 12: A projectile is projected at $30^{\circ}$ from horizontal with initial velocity $40 \mathrm{~ms}^{-1}$. The velocity of the projectile at $\mathrm{t}=2 \mathrm{~s}$ from the start will be :
(Given $g=10 \mathrm{~m} / \mathrm{s}^2$ )
1) Zero
2) (correct) $20 \sqrt{3} \mathrm{~ms}^{-1}$
3) $40 \sqrt{3} \mathrm{~ms}^{-1}$
4) $20 \mathrm{~ms}^{-1}$

Solution:


$\begin{aligned} & \mathrm{U}_{\mathrm{x}}=40 \cos 30=20 \sqrt{3} \\ & \mathrm{U}_{\mathrm{y}}=40 \sin 30=20 \\ & \mathrm{~V}_{\mathrm{x}}=20 \sqrt{3} \\ & \mathrm{~V}_{\mathrm{y}}=\mathrm{u}_{\mathrm{y}}-\mathrm{gt}=20-10 \times 2=0 \\ & \mathrm{~V}=\sqrt{\mathrm{v}_{\mathrm{x}}^2+\mathrm{v}_{\mathrm{y}}^2}=20 \sqrt{3}=\mathrm{ms}^{-1}\end{aligned}$

Hence, the answer is option (2).

Question 13: Consider the following sequence of reactions :

Molar mass of the product formed (A) is _________$\mathrm{g} \mathrm{mol}^{-1}$

Solution:

.

Biphenyl (C12 H10)

Molar mass= 120 x 12 x +10 x1 = 154$\mathrm{g} \mathrm{mol}^{-1}$.

Hence, the answer is 154.

Question 14:

The ratio of the de-Broglie wavelengths of proton and electron having the same Kinetic energy: (Assume $\mathrm{m}_{\mathrm{p}}=\mathrm{m}_{\mathrm{e}} \times 1849$ )
1) 1:62
2) 1:30
3) (correct) 1: 43
4) 2: 43

Solution:

$\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK}}} \\
& \frac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{e}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{~m}_{\mathrm{p}}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{1840 \mathrm{me}}}=\frac{1}{\sqrt{1840}} \\
& \frac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{e}}}=\frac{1}{43}
\end{aligned}$


Hence, the answer is the option (3).

Question 15: 5 g of NaOH was dissolved in deionized water to prepare a 450 mL stock solution this solution would be required to prepare 500 mL of 0.1 M solution?
Given: Molar Mass of $\mathrm{Na}, \mathrm{O}$ and H is 23,16 and $1 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively

Solution:

Molarity of stock solution

$\begin{aligned}
& =\frac{5 / 40}{450} \times 1000 \\
& =\frac{50}{4 \times 45}=\frac{10}{36} \mathrm{M} \\
& \mathrm{M}_1 \mathrm{~V}_1=\mathrm{M}_2 \mathrm{~V}_2 \\
& \frac{10}{36} \times \mathrm{V}=0.1 \times 500 \\
& \mathrm{~V}=\frac{50 \times 36}{10}=180 \mathrm{ml}
\end{aligned}$


Hence, the answer is (180).

Question 16: Three identical resistors with resistance $\mathrm{R}=12 \Omega$ and two identical inductors with self inductance $\mathrm{L}=5 \mathrm{mH}$ are connected to an ideal battery with emf of $
12 \mathrm{~V}
$ as shown in the figure. The current through the battery long after the switch has been closed will be _______ A.

Solution:

After a long time, an inductor behaves as a resistance-less path.

i.e Short all inductor

$\begin{aligned} & \text { Req. }=\frac{\mathrm{R}}{3}=\frac{12}{3}=4 \Omega \\ & \mathrm{I}=\frac{12}{4}=3 \mathrm{~A}\end{aligned}$

Hence, the answer is option (1).

Question 17: An electron with mass ' $m$ ' with an initial velocity $(t=0) \vec{v}=v_0 \hat{i} \quad\left(v_0>0\right)$ enters a magnetic field $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}$. If the initial deBroglie wavelength at $\mathbf{t}=\mathbf{0}$ is $\lambda_0$ then its value after time ' t ' would be :
1) $\frac{\lambda_0}{\sqrt{1-\frac{\mathrm{e}^2 \mathrm{~B}_0^2 \mathrm{t}^2}{\mathrm{~m}^2}}}$

2) $\frac{\lambda_0}{\sqrt{1+\frac{e^2 B_0^2 t^2}{m^2}}}$

3) $\lambda_0 \sqrt{1+\frac{\mathrm{e}^2 \mathrm{~B}_0^2 \mathrm{t}^2}{\mathrm{~m}^2}}$

4) (correct) $\lambda_0$

Solution:

$
\lambda=\frac{\mathrm{R}}{\mathrm{P}}=\frac{\mathrm{h}}{\mathrm{mv}_0}
$

speed will not change in magnetic field $\left(\lambda_0\right)$

Hence, the answer is option (4)

Question 18: In the digital circuit shown in the figure, for the given inputs the P and Q values are :

1) $P=1, Q=1$

2) $P=0, Q=0$

3) $P=0, Q=1$

4) $P=1, Q=0$

Solution:

Hence, the answer is option (2)

Question 19: Let $\alpha$ be the area of the larger region bounded by the curve y $2=8 x$ and the lines $y=x$ and $x=2$, which lies in the first quadrant. Then the value of $3 \alpha$ is equal to

Solution:

$\operatorname{area}(\alpha)=\int_2^8(2 \sqrt{2} \sqrt{x}-x) d x$

$\begin{aligned} & =\left[2 \sqrt{2} \cdot \frac{2}{3} \mathrm{x}^{3 / 2}-\frac{x^2}{2}\right]^8 \\ & =\frac{4 \sqrt{2}}{3}[8 \times 2 \sqrt{2}-2 \sqrt{2}]-30 \\ & =\frac{28 \times 4}{3}-30 \\ & =\frac{112}{3}-30 \\ & \alpha=\frac{22}{3} \\ & 3 \alpha=22\end{aligned}$

Hence, the answer is 22.

Question 20: Let $y=y(x)$ be the solution curve of the differential equation

$x\left(x^2+e^x\right) d y+\left(e^x(x-2) y-x^3\right) d x=0, x>0$

passing through the point $(1,0)$. Then $y(2)$ is equal to :
1) $\frac{4}{4-\mathrm{e}^2}$

2) $\frac{2}{2+\mathrm{e}^2}$

3) $\frac{2}{2-\mathrm{e}^2}$

4) (correct) $\frac{4}{4+\mathrm{e}^2}$

Solution :

For this given differential equation:

$x\left(x^2+e^x\right) d y+\left(e^x(x-2) y-x^3\right) d x=0$

$x\left(x^2+e^x\right) \frac{d y}{d x}+e^x(x-2) y=x^3$

$\frac{d y}{d x}+\frac{e^x(x-2)}{x\left(x^2+e^x\right)} y=\frac{x^2}{x^2+e^x}$

  • $P(x) = \frac{e^x(x - 2)}{x(x^2 + e^x)}=\frac{2 x+e^x}{x^2+e^x}-\frac{2}{x}$

  • $Q(x) = \frac{x^2}{x^2 + e^x}$

JEE Main Previous 10 Year Questions & Solutions
Ace JEE Main with our ultimate ebook featuring previous 10-year question papers (2016–2025), detailed solutions, and clear insights into the latest exam pattern.
Download EBook

The integrating factor:

$\begin{aligned} & \text { IF }=e^{\int p d x}=e^{\int\left(\frac{2 x+e^x}{x^2+e^x}-\frac{2}{x}\right) d x} \\ & =e^{\ln \left(x^2+e^x\right)-2 \ln x} \\ & =e^{\ln \left(\frac{x^2+e^x}{x^2}\right)} \\ & =\frac{x^2+e^x}{x^2}=1+\frac{e^x}{x^2} \\ & y\left(1+\frac{e^x}{x^2}\right)=\int \frac{x^2}{x^2+e^x} \frac{x^2+e^x}{x^2} \\ & y\left(1+\frac{e^x}{x^2}\right)=x+\lambda \\ & y(1)=0 \Rightarrow \lambda=-1 \\ & y=\frac{(x-1) x^2}{x^2+e^x}\end{aligned}$

$y(2)=\frac{4}{4+e^2}$

Hence, the answer is option (4).

Question 21: Two wires $A$ and $B$ are made of the same material, having ratio of lengths $\frac{L_A}{L_B}=\frac{1}{3}$ and their diameter ratio $\frac{d_A}{d_B}=2$. If both the wires are stretched using the same force, what would be the ratio of their respective elongations?
1) 1 : 6
2) (correct) 1 : 12
3) 3 : 4
4) $1: 3$

Solution:

$\begin{aligned}
& \frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}=\frac{1}{3} \text { and } \frac{\mathrm{d}_{\mathrm{A}}}{\mathrm{~d}_{\mathrm{B}}}=2 \\
& \Delta \mathrm{~L}_{\mathrm{A}}=\frac{\mathrm{F}_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}}}{\mathrm{~A}_{\mathrm{A}} \mathrm{Y}_{\mathrm{A}}} \text { and } \Delta \mathrm{L}_{\mathrm{B}}=\frac{\mathrm{F}_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}}}{\mathrm{~A}_{\mathrm{B}} \mathrm{Y}_{\mathrm{B}}}
\end{aligned}$
Given, $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}}$ and $\mathrm{Y}_{\mathrm{A}}=\mathrm{Y}_{\mathrm{B}}$

$\begin{aligned}
& \frac{\Delta L_A}{\Delta L_B}=\frac{\frac{\mathrm{F}_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}}}{\mathrm{~A}_{\mathrm{A}} \mathrm{Y}_{\mathrm{A}}}}{\frac{\mathrm{~F}_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}}}{\mathrm{~A}_{\mathrm{B}} \mathrm{Y}_{\mathrm{B}}}}=\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}\right)\left(\frac{\mathrm{A}_{\mathrm{B}}}{\mathrm{~A}_{\mathrm{A}}}\right) \\
& \frac{\Delta \mathrm{L}_{\mathrm{A}}}{\Delta \mathrm{~L}_{\mathrm{B}}}=\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}\right)\left(\frac{\frac{\pi}{4} \mathrm{~d}_{\mathrm{B}}^2}{\frac{\pi}{4} \mathrm{~d}_{\mathrm{A}}^2}\right)=\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{~L}_{\mathrm{B}}}\right)\left(\frac{\mathrm{d}_{\mathrm{B}}}{\mathrm{~d}_{\mathrm{A}}}\right)^2 \\
& \frac{\Delta \mathrm{~L}_{\mathrm{A}}}{\Delta \mathrm{~L}_{\mathrm{B}}}=\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)^2=\frac{1}{12}
\end{aligned}$

Hence, the answer is option (2).

Question 22: A sample of a liquid is kept at 1 atm . It is compressed to 5 atm which leads to change of volume of $0.8 \mathrm{~cm}^3$. If the bulk modulus of the liquid is 2 GPa , the initial volume of the liquid was $\_\_\_\_$ litre. (Take $1 \mathrm{~atm}=10^5 \mathrm{~Pa}$ )

Solution:

Given,

Initial pressure of liquid $\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~atm}$
Final pressure of liquid $\left(\mathrm{P}_{\mathrm{f}}\right)=5 \mathrm{~atm}$
Change in pressure $(d P)=P_f-P_i=4 \mathrm{~atm}$

$=4 \times 10^5 \mathrm{~Pa}$


Change in volume $(\mathrm{dV})=-0.8 \mathrm{~cm}^3$
Bulk modulus $(\mathrm{B})=2 \times 10^9 \mathrm{~Pa}$
Now,

$\begin{aligned}
& B=\frac{-d P}{(d V / V)} \Rightarrow V=-B\left(\frac{d V}{d P}\right) \\
& \Rightarrow \mathrm{V}=-2 \times 10^9 \times \frac{\left(-0.8 \times 10^{-6}\right)}{4 \times 10^5}=4 \times 10^{-3} \mathrm{~m}^3=4 \text { litre }
\end{aligned}$


Hence, the answer is 4.

Question 23: From the magnetic behaviour of $\left[\mathrm{NiCl}_4\right]^{2-}$ (paramagnetic) and $\left[\mathrm{Ni}(\mathrm{CO})_4\right]$ (diamagnetic), choose the correct geometry and oxidation state.
1) $\left[\mathrm{NiCl}_4\right]^{2-}: \mathrm{Ni}^{\mathrm{II}}$, square planar
$\left[\mathrm{Ni}(\mathrm{CO})_4\right]: \mathrm{Ni}(0)$, square planar
2) (correct) $\left[\mathrm{NiCl}_4\right]^{2-}: \mathrm{Ni}^{\mathrm{II}}$, tetrahedral $\left[\mathrm{Ni}(\mathrm{CO})_4\right]: \mathrm{Ni}(0)$, tetrahedral
3) $\left[\mathrm{NiCl}_4\right]^{2-}: \mathrm{Ni}^{\mathrm{II}}$, tetrahedral $\left[\mathrm{Ni}(\mathrm{CO})_4\right]: \mathrm{Ni}^{\mathrm{II}}$, square planar
4) $\left[\mathrm{NiCl}_4\right]^{2-}: \mathrm{Ni}(0)$, tetrahedral
$\left[\mathrm{Ni}(\mathrm{CO})_4\right]: \mathrm{Ni}(0)$, square planar

Solution:

$\left[\mathrm{NiCl}_4\right]^{2-}$


$\mathrm{Ni}^{+2}-[\mathrm{Ar}] 3 \mathrm{~d}^8 4 \mathrm{~s}^0 \rightarrow \mathrm{sp}^3$, Tetrahedral
Number of unpaired electron $=2$ paramagentic

$\left[\mathrm{Ni}(\mathrm{CO})_4\right]$,


$\mathrm{Ni}(0) \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^0$ (After rearrangement)
No unpaired electron
$\mathrm{sp}^3$, Tetrahedral, Diamagnetic

Hence, the correct answer is option (2).

Question 24: Let $f(x)$ be a positive function and $I_1=\int_{-\frac{1}{2}}^1 2 x f(2 x(1-2 x)) d x$ and $I_2=\int_{-1}^2 f(x(1-x)) d x$. Then the value of $\frac{I_2}{I_1}$ is equal to $\_\_\_\_$
1) 9
2) 6
3) 12
4) (correct) 4

Solution:

$\begin{aligned} & I_1=\int_{-\frac{1}{2}}^1 2 x f(2 x(1-2 x) d x) \\ & I_1=\int_{-\frac{1}{2}}^1 2\left(\frac{1}{2}-x\right) f\left(2\left(\frac{1}{2}-x\right)\left(1-2\left(\frac{1}{2}-x\right)\right)\right) d x \\ & I_1=\int_{-\frac{1}{2}}^1(1-2 x) f((1-2 x)(2 x)) d x\end{aligned}$

$\begin{aligned} & I_1=\int_{-\frac{1}{2}}^1 f((1-2 x)(2 x)) d x-\int_{-\frac{1}{2}}^1 2 x \underbrace{f((1-2 x)(2 x)) d x}_{I_1} \\ & 2 I_1=\int_{-\frac{1}{2}}^1 f((1-2 x)(2 x)) d x\end{aligned}$

Put $2 x=t$

$\begin{aligned}
& 2 d x=d t \\
& d x=\frac{d t}{2} \\
& 2 I_1=\frac{1}{2} \int_{-1}^2 f((1-t)(t)) d t \\
& I_1=\frac{1}{4} \int_{-1}^2 f((1-x)(x)) d x \\
& I_1=\frac{1}{4} I_2 \\
& 4 \Rightarrow \frac{I_2}{I_1}
\end{aligned}$
Hence, the answer is option (4).

Question 25: Let the domain of the function $f(x)=\log _2 \log _4 \log _6\left(3+4 x-x^2\right)$ be $(a, b)$. If $\int_0^{\mathrm{b}-\mathrm{a}}\left[\mathrm{x}^2\right] \mathrm{dx}=\mathrm{p}-\sqrt{\mathrm{q}}-\sqrt{\mathrm{r}}, \mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{N}, \operatorname{gcd}(\mathrm{p}, \mathrm{q}, \mathrm{r})=1$, where $[\cdot]$ is the greatest integer function, then $\mathrm{p}+\mathrm{q}+\mathrm{r}$ is equal to
1) (correct) 10
2) 8
3) 11
4) 9

Solution:

We need:
$\log_4 \log_6(3 + 4x - x^2) > 0$
This implies:
$\log_6(3 + 4x - x^2) > 1$
$3 + 4x - x^2 > 6$
$x^2 - 4x + 3 < 0$
$(x - 1)(x - 3) < 0 \Rightarrow x \in (1, 3)$

So domain is $(a, b) = (1, 3) \Rightarrow b - a = 2$

Now compute:
$\int_0^2 [x^2] \, dx$

Break into intervals based on $x^2$:

  • $[x^2] = 0$ for $x \in [0,1)$

  • $[x^2] = 1$ for $x \in [1,\sqrt{2})$

  • $[x^2] = 2$ for $x \in [\sqrt{2},\sqrt{3})$

  • $[x^2] = 3$ for $x \in [\sqrt{3},\sqrt{4})$

Amrita University B.Tech 2026

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Application Deadline: 15th Jan

Jain University B.Tech Admissions 2026

100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted

So the integral becomes:
$\int_0^1 0\,dx + \int_1^{\sqrt{2}} 1\,dx + \int_{\sqrt{2}}^{\sqrt{3}} 2\,dx + \int_{\sqrt{3}}^{2} 3\,dx$
$=(\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3})$
$= 5 - \sqrt{2} - \sqrt{3}$

Thus,
$p = 5,\ q = 2,\ r = 3 \Rightarrow p + q + r = 10$

Hence, the answer is option (1).

Frequently Asked Questions (FAQs)

Q: What are the most frequently repeated topics in JEE Mains?
A:

The top 25 repeated questions typically cover:

  • Physics: Kinematics, Newton’s Laws of Motion, Work-Energy-Power, Rotational Motion, Thermodynamics, and Semiconductor Devices.

  • Chemistry: Periodic Table Trends, Chemical Bonding, Coordination Compounds, Organic Chemistry (e.g., Reactions, Isomerism), and Stoichiometry.

  • Mathematics: Calculus (Differentiation), Coordinate Geometry, Algebra, and Matrices and Determinants.

Q: How can solving these 25 repeated questions help me achieve a 250+ score?
A:

These questions are highly repeated, and high-weightage problems in previous JEE Mains papers. Solving them ensures the 

  • Speed and Accuracy: Regular practice reduces question-solving time.

  • Confidence: Experience with the same patterns suggests that accuracy will improve.

  • Time Allocation: You can quickly solve these questions and focus the remaining time on others.

Q: Which study materials or books are best for practicing these repeated questions?
A:

Recommended books for JEE mains are given below:

  • Physics: "Concepts of Physics" by H.C. Verma (for theory + problems), JEE Mains-specific problem books.

  • Chemistry: NCERT Textbooks for Inorganic/Physical Chemistry, "Organic Chemistry" by Morrison and Boyd.

  • Mathematics: "IIT Mathematics" by M.L. Khanna, Arihant Series for targeted topics.

Q: What are common mistakes to avoid when practicing questions?
A:

The common mistakes are:

  • Over-dependence on shortcuts: Understand the use of these formulas, not just the reproduction of them.

  • Ignoring weak points: Don't shy away from those difficult topics-look at your mistakes and the concepts again. 

  • Lack of time-bound practice: Try to solve the problems with time constraints just like the examination. Shortcuts mustn't be the crutch: Understand the use of these formulas, not just reproduction of them. 
Articles
|
Upcoming Engineering Exams
Ongoing Dates
HITSEEE Application Date

5 Nov'25 - 22 Apr'26 (Online)

Ongoing Dates
SMIT Online Test Application Date

15 Nov'25 - 12 Apr'26 (Online)

Ongoing Dates
SNUSAT Application Date

19 Nov'25 - 31 Mar'26 (Online)

Certifications By Top Providers
B.Tech Engineering Technology
Via Birla Institute of Technology and Science, Pilani
Certificate Program in Machine Learning and AI with Python
Via Indian Institute of Technology Bombay
Post Graduate Diploma Program in Data Science and Artificial Intelligence
Via Indraprastha Institute of Information Technology, Delhi
Computer Fundamentals
Via Devi Ahilya Vishwavidyalaya, Indore
Programming Basics
Via Indian Institute of Technology Bombay
C-Based VLSI Design
Via Indian Institute of Technology Guwahati
Udemy
 1525 courses
Swayam
 817 courses
NPTEL
 773 courses
Coursera
 697 courses
Edx
 608 courses
Explore Top Universities Across Globe

Questions related to JEE Main

On Question asked by student community

Have a question related to JEE Main ?

Hello aspirant,

With a 90 percentile in JEE Mains and belonging to the EWS category, you have a decent chance for some IIITs, especially newer or lower-ranked ones like IIIT Pune, Nagpur, Vadodara, or Lucknow, or non-CSE branches in better IIITs, but getting top IIITs (like IIIT Hyderabad/Delhi) or core

Hello,

Yes, attendance is compulsory in Class XI and XII.

As per school and board rules, students must maintain minimum attendance, usually around 75%. Schools can stop students from appearing in board exams if attendance is short.

Even if a student is preparing for JEE or any other competitive exam

Hello,

You can find here the direct links to download the JEE Main last 10 years PYQ PDFs from the Official Careers360 website.

Kindly visit this link to access the question papers : Last 10 Years JEE Main Question Papers with Solutions PDF

Hope it helps !

Hello Harika,

Firstly, you cannot prepare for JEE in 8 days if you havent studied before. But still, You can try solving the previous year question papers. Here's a Link for the same

Previous Year Questions

HELLO,

If you are from General category with 57 percent in 12th then to appear for JEE Advanced you need to be in top percentile of your board as the eligibility for JEE advanced you need at least 75 percent in 12th or in the top 20 percentile of your