JEE Main 2026 January 22 Question Paper with Solutions
We have also provided you with memory-based questions below from the JEE Main 2026 January 22 Question Paper shift 2 from all subjects - Physics, Chemistry, and Maths. Some questions from Jan 22 Shift 2 listed below:
JEE Main 2026 Jan 22 Shift 2 Chemistry Question Paper
Question 1:The correct order of electron gain enthalpy (magnitude only) for group 16 elements is
$1\quad \mathrm{Te}>\mathrm{Se}>\mathrm{S}>\mathrm{O}$
$2 \quad \mathrm{~S}>\mathrm{Se}>\mathrm{Te}>0$
$3 \quad \mathrm{O}>\mathrm{S}>\mathrm{Se}>\mathrm{Te}$
$4 \quad \mathrm{~S}>\mathrm{O}>\mathrm{Se}>\mathrm{Te}$
Question 2: $100 \mathrm{~g} \quad\mathrm{98} \mathrm{\%}$ by weight $\mathrm{H}_2 \mathrm{SO}_4$ is mixed with $100 \mathrm{~g} \quad\mathrm{49} \mathrm{\%}$ by weight $\mathrm{H}_2 \mathrm{SO}_4$. Mole fraction of $\mathrm{H}_2 \mathrm{SO}_4$ solution is
$1 \quad 0.9$
$2 \quad 0.1$
$3 \quad 0.67$
$\begin{array}{ll}4 & 0.33\end{array}$
Question 3: Correct order of ionisation enthalpy is
$1 \quad \mathrm{~F}>\mathrm{Cl}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$
$2\quad \mathrm{~F}^{-}>\mathrm{Cl}^{-}>\mathrm{F}>\mathrm{Cl}$
$3 \quad\mathrm{Cl}>\mathrm{F}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$
$4 \quad \mathrm{~F}>\mathrm{Cl}^{-}>\mathrm{F}^{-}>\mathrm{Cl}^{-}$
Question 4: Which of the following is a mixed oxide?
$1 \quad \mathrm{Fe}_2 \mathrm{O}_3$
$2 \quad \mathrm{PbO}_2$
$3 \quad \mathrm{~Pb}_3 \mathrm{O}_4$
$4 \quad \mathrm{BaO}_2$
JEE Main 2026 22 Jan Shift 1 Physics Question Paper
Question 5: Find the dimensions of the expression $\frac{\varepsilon_0 E}{T}$, where $\varepsilon_0, \mathrm{E}$ and T are permittivity, electric field and time.
1. AL
2. $\mathrm{Al}^{-2}$
3. $\mathrm{MA}^{-1} \mathrm{~L}$
4. $\mathrm{MLA}^2$
Question 6: In an open organ pipe $3^{\text {rd }}$ and $6^{\text {th }}$ harmonic frequency differ by 3200 Hz . Find the length of organ pipe (speed of sound $=320 \mathrm{~m} / \mathrm{s}$ )
1. 5 cm
2. 10 cm
3. 15 cm
4. 20 cm
JEE Main 2026 Jan 22 Shift 1 Maths Paper
Question 7: If complex numbers $Z_1, Z_2, \ldots, Z_n$ satisfy the equation $4 Z^2+\bar{Z}=0$, then $\sum_{i=1}^n\left|Z_i\right|^2$ is equal to
1. $\frac{3}{16}$
2. $\frac{3}{64}$
3. $\frac{9}{64}$
4. $\frac{1}{16}$
Question 8: Let $\alpha, \beta$ be the roots of quadratic equation $12 x^2-20 x+3 \lambda=0, \lambda \in \mathbb{Z}$. If $\frac{1}{2} \leq|\beta-\alpha| \leq \frac{3}{2}$ then the sum of all possible values of $\lambda$ is
Question 9: The number of elements in the relation $R=\left\{(x, y): 4 x^2+y^2<52, x, y \in z\right\}$ is
Question 10: Area eclosed by $4 x^2+y^2 \leq 8$ and $y^2 \leq 4 x$ (in square unit) is
1. $\left(\pi+\frac{4}{3}\right)$ sq. unit
2. $\left(\pi-\frac{4}{3}\right)$ sq. unit
3. $\left(\pi+\frac{2}{3}\right)$ sq. unit
4. $\left(\pi-\frac{2}{3}\right)$ sq. unit