## Quick Links

## About SBAIEE 2019

SBAIEE 2019 is a computer-based test expected to be conducted in the last week of April. SBAIEE is conducted to invite admissions to B.E/B.Tech and B.Arch programmes at Sathyabama Institute of Science and Technology. It is necessary for the candidates to ensure that they meet the eligibility criteria prescribed by the authorities. Candidates have to fill and submit the application form of SBAIEE 2019 which will be available in both online and offline mode. An application fee has to be paid by the candidates applying for the exam. The hall ticket for SBAIEE will be available after the completion of the slot booking process. On the basis of the performance in the entrance exam, candidates will be called for the counselling and document verification.

Exam level: | University Level Exam |

Frequency: | Once a year |

Languages | English |

Conducting Body: | Sathyabama Institute of Science and Technology |

Duration | 2.5 Hours |

#### Download all details about SBAIEE 2019

Download Brochure## SBAIEE 2019 Important Dates

01 Nov, 2018 - 14 Apr, 2019 (Tentative) | Application | Mode: Offline and Online |

18 Apr, 2019 - 22 Apr, 2019 (Tentative) | Slot Booking | Mode: Online |

18 Apr, 2019 - 22 Apr, 2019 (Tentative) | Admit Card - downloading of admit card | Mode: Online |

28 Apr, 2019 - 29 Apr, 2019 (Tentative) | Exam - computer based test | Mode: Online |

09 Aug, 2018 (Tentative) | Result | Mode: Online |

21 Aug, 2018 (Tentative) | Counselling - Start Date | Mode: Offline |

## SBAIEE 2019 Eligibility Criteria

Candidates must check the eligibility criteria of SBAIEE 2019 to make sure that they are eligible to apply.

**Nationality: **Candidates must be a resident of India. NRIs and foreign candidates are not allowed to appear in SBAIEE 2019

**Educational Qualification: **

- Candidate should have passed the qualifying exam with the first class or grade in March or April 2018. Candidates appearing for class 12 or the equivalent examination in 2019 are also eligible to apply.
- Candidate should have passed class 10 or equivalent examination with an aggregate of 60% or CGPA 6.
- Compartment candidates would not be eligible

**Age Limit: **The candidate should have born on or after January 1, 1999, to be eligible for SBAIEE 2019.

## SBAIEE 2019 Application Process

Mode of Application : Offline and Online

Mode of Payment : Net Banking | Credit Card | Debit Card | Demand Draft | Bank Challan

### Application Fees

Category | Quota | Mode | Gender | Amount |
---|---|---|---|---|

General, ST, OBC, SC | Offline, Online | Female, Transgender, Male | ₹ 950 | |

General, ST, OBC, SC | PWD | Offline, Online | Female, Transgender, Male | ₹ 950 |

The application forms for SBAIEE 2019 will be available in both online and offline mode. The application process will tentatively start from November 2019. Candidates are required to fill and submit the application form of SBAIEE 2019. To obtain the offline application form, candidates are required to pay the required amount of fee and obtain the form from the University campus. Candidates can also send a demand draft of the prescribed amount in favor of Sathyabama Institute of Science and Technology, payable at Chennai along with the request letter through the post within the stipulated time.

After filling the form completely, candidates must send it to the given address:

The coordinator, Entrance Examination-2017,

Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai,

Chennai - 600 119

Another way to fill the SBAIEE application form is to register and fill the form online by entering the required details like name, email id, contact number, etc. Candidates have to then upload the photograph and signature in the following dimensions,

Image | Dimensions | Format | Size |

Signature | 300*60 pixels | JPG/GIF | 100 kb |

Photograph | 135*175 pixels | JPG/GIF | 200 KB |

Candidates then have to pay the prescribed application fee through credit card/ debit card or net banking.

## SBAIEE 2019 Application Process

## SBAIEE 2019 Syllabus

Biology | |
---|---|

Diversity of living organism | What is living? |

Biodiversity | |

Need for classification | |

Three domain of life | |

Taxonomy and systematics | |

Concept of species and taxonomical hierarchy | |

Binomial nomenclature | |

Tools for study of taxonomy museums, zoos,herbaria and botanical gardens | |

Five kingdom classification | |

Salient features and classification of Monera | |

Protista and Fungi into major groups | |

Lichens | |

Viruses and Viroids | |

Salient features and classification of plants into major groups - algae, bryophytes, pteridophytes, gymnosperms and angiosperms | |

Classification of Angiosperms up to class | |

Characteristic features and examples | |

Salient features and classification of animals-non chordate up to phyla level and chordate up to classes level | |

Structural Organisation in Animals and Plants | Morphology and Modifications |

Tissues | |

Anatomy and functions of different parts of flowering plants are root, stem,leaf,inflorescence,flower and fruit and seed | |

Animal tissues | |

Morphology and anatomy and functions of different system of an insect | |

Cell Structure and Function | Cell theory and cell as the basic unit of life |

Structure of Prokaryotic and Eukaryotic cell | |

Plant cell and Animal cell | |

Cell envelope | |

cell membrane | |

cell wall | |

Structure and function of cell organelles | |

Endomembrane system are endoplasmic reticulum,golgi bodies,lysosomes and vacuoles | |

Mitochondria | |

Ribosomes | |

Plastids | |

Microbodies | |

Ultra structure and function are cytoskeleton,cilia,flagella and centrioles | |

Nucleus and their nuclear membrane | |

Chromatin | |

Nucleous | |

Chemical constituents of living cells | |

Biomolecules | |

Structure and Function of Proteins | |

Carbodydrates | |

Lipuid | |

Nucleic acids | |

Types of Enzymes | |

Properties | |

Cell division | |

Cell cycle | |

Mitosis, meiosis and their significance | |

Plant Physiology | Transport in plants |

Movement of water | |

Movement of gases and nutrients | |

Cell to cell transport | |

Diffusion | |

Faciliated diffusion | |

Active transport | |

Plant-water relations-imbibition | |

Water Potential | |

Osmosis | |

Plasmolysi | |

Long distance transport of water | |

Absorption | |

Apoplast | |

Symplast | |

Transpiration pull | |

Root pressure and guttation | |

Transpiration - opening and closing of stomata | |

Uptake and translocation of mineral nutrients | |

Transport of food | |

Phloem transport | |

Mass flow hypothesis | |

Diffusion of gases | |

Mineral nutrition | |

Essential minerals | |

Macro and Micronutrients and their role | |

Deficiency symptoms | |

Mineral toxicity | |

Elementary idea of Hydroponics as a method to study mineral nutrition | |

Nitrogen metabolism | |

Nitrogen cycle | |

Biological Nitrogen fixation | |

Photosynthesis | |

Photosynthesis as a means of Autotrophic nutrition | |

Photosynthesis take place | |

How many pigments are involved in photosynthesis | |

Photochemical and biosynthetic phases of photosynthesis | |

Cyclic and non cyclic photophosphorylation | |

Chemiosmotic hypothesis | |

Photorespiration | |

C3 and c4 pathways | |

Factors affecting photosynthesis | |

Respiration | |

Exchange of gases | |

Cellular respiration | |

Glycolysis | |

Fermentation | |

Tca cycle and electron transport system | |

Energy relations | |

Number of ATP molecules generated | |

Amphibolic pathways | |

Respiratroy quotient | |

Plant growth and development | |

Seed germination | |

Phases of Plant growth and plant growth rate | |

Conditions of growth | |

Differentiation and dedifferentiation and redifferentiation | |

Sequence of developmental process in a plant cell | |

Growth regulators - auxin, gibberellin, cytokinin, ethylene and aba | |

Seed dormancy | |

Vernalisation | |

Photoperiodism | |

Human Physiology | Digestion and absorption |

Alimentary canal and digestive glands | |

Role of digestive enzymes and Gastrointestinal hormones | |

Peristalsis | |

Digestion | |

Absorption and Assimilation of Proteins | |

Carbohydrates and Fats | |

Calorific value of proteins, carbohydrates and fat | |

Egeston | |

Nutritional and Digestive disorders | |

PEM | |

Indigestion | |

Constipation | |

Vomiting | |

Jaundice | |

Diarrhea | |

Breathing and Respiration | |

Respiratory organs in animals | |

Respiratory system in humans | |

Mechanism of breathing and its regulation in humans | |

Exchange of gases | |

Transport of gases and regulation of respiration | |

Respiratory volume | |

Disorders related to respiration - asthma | |

Emphysema | |

Occupatonal respiratory disorders | |

Body fluids and circulation | |

Composition of blood | |

Blood groups | |

Coagulation of blood | |

Composition of Lymph and its function | |

Human circulatory system-structure of human heart and blood vessels | |

Cardiac cycle, cardiac output and ecg | |

Double circulation | |

Regulation of cardiac activity | |

Disorders of circulatory system | |

Hypertension | |

Coronary artery disease | |

Angina pectoris | |

Heart failure | |

Excretory products and their elimination | |

Modes of excretion and ammonotelism | |

Ammonotelism, ureotelism and uricotelism | |

Human excretory system | |

Structure and fuction | |

Urine formation | |

Osmoregulation | |

Regulation of kidney function | |

Renin-angiotensin | |

A trial natriuretic factor | |

ADH and Diabetes insipidus | |

Role of other organs in excretion | |

Disorders and uraemia | |

Renal failure | |

Renal calculi | |

Nephritis | |

Dialysis and artificial kidney | |

Locomotion and Movement | |

Types of movement - ciliary, flagellar and muscular | |

Skeletal muscle | |

Contractile Proteins and Muscle Contraction | |

Skeletal system and its functions | |

Joints | |

Disorders of muscular and skeletal system | |

Myasthenia gravis | |

Tetany | |

Muscular dystrophy | |

Arthritis | |

Osteoporosis | |

Gout | |

Neural control and coordination | |

Neuron and nerves | |

Nervous system in humans | |

Central nervous system, peripheral nervous system and visceral nervous system | |

Generation and conduction of nerve impulse | |

Reflex action | |

Sensory perception | |

Sense organs | |

Elementary structure and function of eye and ear | |

Chemical coordination and regulation | |

Endocrine glands and hormones | |

Human endocrine system | |

Hypothalamus | |

Pituitary | |

Pineal | |

Thyroid | |

Parathyroid | |

Adrenal | |

Pancreas | |

Gonads | |

Mechanism of hormone action | |

Role of hormones as messengers and regulators | |

Hypo and hyperactivity and related disorders | |

Reproduction | Reproduction in organisms |

Reproduction | |

A characteristic feature of all organisms for continuation of species | |

Modes of reproduction | |

A sexual and sexual reproduction | |

Modes - binary fission | |

Sporulation | |

Budding | |

Gemmule | |

Fragmentation | |

Vegetative propagation in plants | |

Sexual reproduction in flowering plant | |

Flower structure | |

Development of male and female gametophytes | |

Types of pollination | |

Agencies and examples | |

Outbreedings devices | |

Pollen | |

Pistil interaction | |

Double fertilization | |

Post fertilization events | |

Development of endosperm and embryo | |

Development of seed and formation of fruit | |

Special modes of apomixis | |

Parthenocarpy | |

Polyembryony | |

Significance of seed and fruit formation | |

Human Reproduction | |

Male and female reproductive systems | |

Microscopic anatomy of testis and ovary | |

Gametogenesis-spermatogenesis and oogenesis | |

Menstrual cycle | |

Fertilisation embryo development upto blastocyst formation | |

Implantation | |

Pregnancy and placenta formation | |

Parturition | |

Lactation | |

Chemistry | |

Some Basic Concepts In Chemistry | Matter and its Nature |

Dalton’s Atomic Theory | |

Concept of atom | |

Concept of molecule | |

Concept of element and compound | |

Physical quantities and their Measurements in Chemistry | |

Precision and Accuracy | |

Significant Figures | |

S.i. units | |

Dimensional Analysis | |

Laws of Chemical Combination | |

Atomic and Molecular Masses | |

Mole Concept | |

Molar Mass | |

Percentage Composition | |

Empirical and Molecular formulae | |

Chemical Equations and Stoichiometry | |

States of Matter | Classification of matter into solid, liquid and gaseous states |

Measurable properties of gases | |

Gas laws | |

Boyle’s law | |

Charle’s law | |

Graham’s law of diffusion | |

Avogadro’s law | |

Dalton’s law of partial pressure | |

Concept of Absolute scale of temperature | |

Ideal gas equation | |

Kinetic theory of gases only postulates | |

Concept of average | |

Concept of root mean square and most probable velocities | |

Real gases | |

Deviation from Ideal behaviour | |

Compressibility factor | |

Van der waals equation | |

Liquefaction of gases | |

Critical constants | |

Properties of liquids | |

Vapour pressure | |

Viscosity and surface tension and effect of temperature on them | |

Classification of solids states | |

Molecular | |

Ionic | |

Covalent and metallic solids | |

Amorphous and crystalline solids | |

Bragg’s Law and its applications | |

Unit cell and lattices | |

Packing in solids | |

Voids | |

Calculations involving unit cell parameters | |

Imperfection in solids | |

Electrical | |

Magnetic and dielectric properties | |

Atomic Structure | Discovery of sub-atomic particles |

Thomson and Rutherford atomic models and their Limitations | |

Nature of electromagnetic radiation | |

Nature of photoelectric effect | |

Spectrum of hydrogen atom | |

Bohr model of hydrogen atom of its postulates | |

Derivation of the relations for energy of the electron and radii of the different orbits | |

Limitations of bohr’s mode | |

Dual nature of matter | |

De-broglie’s relationship | |

Heisenberg uncertainty principle | |

Elementary ideas of quantum mechanics | |

Quantum mechanical model of atom and its important features | |

Concept of atomic orbitals as one electron wave functions | |

Variation of and with r for 1s and 2s orbitals | |

Various quantum numbers and their significance | |

Shapes of s, p and d - orbitals | |

Electron spin and spin quantum number | |

Shapes of d orbitals and electron spin and spin quantum number | |

Rules for filling electrons in orbitals aufbau principle | |

Pauli’s exclusion principle and Hund’s rule | |

Electronic configuration of elements | |

Extra stability of half-filled and completely filled orbitals | |

Chemical bonding and molecular strucure | Kossel - lewis approach to chemical bond formation |

Concept of ionic and covalent bonds | |

Formation of ionic bonds | |

Factors affecting the formation of ionic bonds | |

Calculation of lattice enthalpy | |

Covalent Bonding | |

Concept of electronegativity | |

Fajan’s rule | |

Dipole moment | |

Valence Shell Electron Pair Repulsion theory and shapes of simple molecules | |

Quantum mechanical approach to covalent bonding | |

Valence bond theory and Its important features | |

Concept of hybridization involving s, p and d orbitals | |

Resonance | |

Molecular Orbital Theory and Its important features | |

LCAOs | |

Types of molecular orbitals | |

Sigma and pi-bonds | |

Molecular orbital electronic configurations of homonuclear diatomic molecules | |

Concept of bond order | |

Bond length and bond energy | |

Elementary idea of metallic bonding | |

Hydrogen bonding and its applications | |

Chemical Thermodynamics | Fundamentals of Thermodynamics |

System and surroundings | |

Extensive and intensive properties | |

State functions | |

Types of processes | |

Concept of work | |

Heat internal energy and enthalpy | |

Heat capacity | |

Molar heat capacity | |

Hess’s law of constant heat summation | |

Enthalpies of bond dissociation | |

Enthalpies of combustion | |

Enthalpies of formation | |

Enthalpies of atomization | |

Enthalpies of sublimation | |

Enthalpies of phase transition | |

Enthalpies of hydration | |

Enthalpies of ionization and solution | |

Second law of thermodynamics | |

Spontaneity of processes | |

Ds of the universe and g of the system as criteria for spontaneity | |

Standard gibbs energy change and quilibrium constant | |

Solutions | Different methods for expressing concentration of solution |

Molality | |

Molarity | |

Mole fraction | |

Percentage | |

Vapour pressure of solutions and raoult’s law ideal and non-ideal solutions | |

Vapour pressure of composition | |

Plots for ideal and non-ideal solutions | |

Colligative properties of dilute solutions and relative lowering of vapour pressure | |

Depression of freezing point | |

Elevation of boiling point and osmotic pressure | |

Determination of molecular mass using colligative properties | |

Abnormal value of molar mass | |

Van’t hoff factor and its significance | |

Equilibrium | Meaning of equilibrium |

Concept of dynamic equilibrium | |

Equilibria involving physical processess of solid-liquid equilibria | |

Liquid-gas and solid-gas equilibria | |

Henry’s law | |

General characterics of equilibrium involving physical processes | |

Equilibria involving chemical processes | |

Law of chemical equilibrium | |

Equilibrium constants and their significance | |

Significance of dg and dgo in chemical equilibria | |

Factors affecting equilibrium concentration | |

Pressure | |

Temperature | |

Effect of catalyst | |

Le Chatelier’s principle | |

Ionic equilibrium | |

Weak and strong electrolytes | |

Ionization of electrolytes | |

Various concepts of acids and bases and their ionization | |

Acid - base equilibria including multistage ionization and ionization constants | |

Ionization of water | |

pH scale | |

Common ion effect | |

Hydrolysis of salts and pH of their solutions | |

Solubility of sparingly soluble salts and solubility products | |

Buffer solutions | |

Redox Reactions and Electrochemistry | Electronic concepts of oxidation and reduction |

Redox reactions | |

Oxidation number | |

Rules for assigning oxidation number | |

Balancing of redox reactions | |

Eectrolytic and metallic conduction | |

Conductance in electrolytic solutions | |

Specific and molar conductivities and their variation with concentration | |

Kohlrausch’s law and its applications | |

Electrochemical cells | |

Electrolytic and Galvanic cells | |

Different types of electrodes | |

Electrode potentials including standard electrode potential | |

Half - cell and cell reactions | |

Emf of a Galvanic cell and its measurement | |

Nernst equation and its applications | |

Relationship between cell potential and gibbs’ energy change | |

Dry cell and lead accumulator | |

Fuel cells | |

Corrosion and its prevention | |

Chemical Kinetics | Rate of a chemical reaction |

Factors affecting the rate of reactions | |

Concentration, temperature, pressure and catalyst | |

Elementary and complex reactions | |

Order and molecularity of reactions | |

Rate law | |

Rate constant and its units | |

Differential and integral forms of zero and first order reactions and their characteristics | |

Half-lives | |

Effect of temperature on rate of reactions arrhenius theory | |

Activation energy and its calculation | |

Collision theory of bimolecular gaseous reactions | |

Surface Chemistry | Adsorption |

Physisorption and chemisorption and their characteristics | |

Factors affecting adsorption of gases on solids | |

Freundlich and Langmuir adsorption isotherms | |

Dsorption from solutions | |

Homogeneous and heterogeneous catalyst | |

Activity and selectivity of solid catalysts | |

Enzyme catalysis and its mechanism | |

Colloidal state | |

Distinction among true solutions | |

Colloids and suspensions | |

classification of colloids | |

Lyophilic | |

Lyophobic | |

Multi molecular | |

Macromolecular and associated colloids | |

Preparation and properties of colloids | |

Tyndall effect | |

Brownian movement | |

Electrophoresis | |

Dialysis | |

Coagulation and flocculation | |

Emulsions and their characteristics | |

Inorganic chemistry | |

Classificaton of elements and periodicity in properties | Modem periodic law and present form of the periodic table, s, p, d and f block elements |

Periodic trends in properties of elements atomic and ionic radii | |

Ionization enthalpy | |

Electron gain enthalpy | |

Valence | |

Oxidation states and chemical reactivity | |

General principles and processes of isolation of metals | Modes of occurrence of elements in nature, minerals and ores |

Steps involved in the extraction of metals-concentration | |

Chemical and electrolytic methods and refining with special reference to the extraction of al, cu, zn and fe | |

Thermodynamic and electrochemical principles involved in the extraction of metals | |

Hydrogen | Position of hydrogen in periodic table |

Isotopes | |

Preparation, properties and uses of hydrogen | |

Physical and chemical properties of water and heavy water | |

Structure | |

Preparation, reactions and uses of hydrogen peroxide | |

Classification of hydrides | |

Ionic, covalent and interstitial | |

Hydrogen as a fuel | |

S - block elements - alkali andalkaline earth metals | General Introduction of Group 1 and 2 Elements |

S - block elements alkali andalkaline earth metals | Electronic configuration and general trends in physical and chemical properties of elements |

Anomalous properties of the first element of each group | |

Diagonal relationships | |

Preparation and Properties of Some important Compounds | |

Industrial uses of lime | |

Limestone | |

Industrial uses of plaster of paris and cement | |

Biological significance of Na, K, Mg and Ca | |

P - Block Elements | General introduction of group - 13 to group 18 elements |

Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups | |

Unique behaviour of the first element in each group | |

Groupwise study of the p block elements group 13 | |

Preparation, properties and uses of boron and aluminium | |

Structure, properties and uses of borax | |

Structure, properties and uses of boric acid | |

Structure, properties and uses of biborane | |

Structure, properties and uses of boron trifluoride | |

Structure, properties and uses of aluminium chloride and alums | |

Tendency for catenation | |

Structure, properties and uses of allotropes and oxides of carbon | |

Properties and uses of allotropes and oxides of carbon | |

Silicon tetrachloride | |

Silicates | |

Zeolites and silicones | |

Properties and uses of nitrogen and phosphorus of group 15 elements | |

Allotrophic forms of phosphorus | |

Preparation, properties, structure and uses of ammonia | |

Preparation, properties, structure and uses of nitric acid | |

Preparation, properties, structure and uses of phosphine and phosphorus halides | |

Pcl3 and pcl5 | |

Structures of oxides and oxoacids of nitrogen and phosphorus | |

Preparation, properties, structures and uses of dioxygen and ozone of group 16 element | |

Allotropic forms of sulphur | |

Preparation, properties, structures and uses of sulphur dioxide | |

Preparation, properties, structures and uses of sulphuric acid | |

Structures of oxoacids of Sulphur | |

Preparation, properties and uses of chlorine and hydrochloric acid of group 17 elements | |

Trends in the acidic nature of hydrogen halides | |

Structures of interhalogen compounds and oxides and oxoacids of halogens | |

Occurrence and uses of noble gases of group 18 elements | |

Structures of fluorides and oxides of xenon | |

D– and f –block elements | General introduction od transition elements |

Electronic configuration | |

Occurrence and characteristics | |

General trends in properties of the first row transition elements | |

Physical properties | |

Ionization enthalpy | |

Oxidation states | |

Atomic radii | |

Colour | |

Catalytic behaviour | |

Magnetic properties | |

Complex formation | |

Interstitial compounds | |

Alloy formation | |

Preparation, properties and uses of k2 cr2 o7 and kmno4 | |

Electronic configuration of lanthanoids | |

Chemical reactivity and lanthanoid contraction | |

Electronic configuration and oxidation states of Actinoids | |

Co-ordination Compounds | Introduction to co-ordination compounds |

Werner’s theory | |

Ligands | |

Co-ordination number | |

Denticity | |

Chelation | |

IUPAC Nomenclature of mononuclear coordination compounds | |

Isomerism | |

Valence bond approach and basic ideas of Crystal field theory | |

Colour and magnetic properties | |

Importance of coordination compounds | |

Environmental Chemistry | Environmental pollution of atmospheric |

Environmental pollution of water and soil | |

Tropospheric and stratospheric of atmospheric pollution | |

Tropospheric pollutants gaseous pollutants | |

Oxides of carbon, nitrogen and sulphur | |

Hydrocarbons and their sources | |

Harmful effects and prevention | |

Green house effect and Global warming | |

Acid rain | |

Particulate pollutants | |

Smoke and their sources | |

Dust and their sources | |

Smog and their sources | |

Fumes and their sources | |

Mist and their sources | |

Stratospheric pollution | |

Formation and breakdown of ozone | |

Depletion of ozone layer and its mechanism and effects | |

Water Pollution | |

Major pollutants such as pathogens | |

Organic wastes and chemical pollutants and their harmful effects and prevention | |

Soil pollution | |

Major pollutants such as pesticides insecticides and their harmful effects and prevention | |

Strategies to control environmental pollution | |

Organic chemistry | |

Purification and characterisation of organic compounds | Purification |

Crystallization | |

Sublimation | |

Distillation | |

Differential extraction and chromatography | |

Principles and their applications | |

Qualitative analysis | |

Detection of Nitrogen, Sulphur, Phosphorus and Halogens | |

Estimation of carbon | |

Hydrogen | |

Nitrogen | |

Halogens | |

Sulphur | |

Phosphorus | |

Calculations of empirical formulae and molecular formulae | |

Numerical problems in organic quantitative analysis | |

Some basic principles of organic chemistry | Tetravalency of carbon |

Shapes of simple molecules | |

Hybridization (s and p) | |

Classification of organic compounds based on functional groups and those containing halogens, oxygen, nitrogen and sulphur | |

Homologous series | |

Structural and stereoisomerism of isomerism | |

Nomenclature | |

Covalent bond fission | |

Homolytic and heterolytic | |

Free radicals, carbocations and carbanions | |

Stability of carbocations and free radicals | |

Electrophiles and Nucleophiles | |

Electronic displacement in a covalent bond | |

Inductive effect | |

Electromeric effect | |

Resonance and hyperconjugation | |

Common types of organic reactions | |

Substitution and addition | |

Elimination and earrangement | |

Hydrocarbons | Classification |

Isomerism | |

IUPAC nomenclature | |

General methods of preparation | |

Properties and reactions | |

Conformations of alkanes | |

Sawhorse and Newman projections | |

Mechanism of halogenations of alkanes | |

Geometrical isomerism of alkenes | |

Mechanism of electrophilic addition | |

Addition of Hydrogen | |

Halogens | |

Water | |

Hydrogen halides | |

Ozonolysis | |

Oxidation and polymerization | |

Acidic character of Alkynes | |

Addition of hydrogen, halogens, water and hydrogen halides | |

Polymerization | |

Nomenclature of Aromatic hydrocarbons | |

Structure and aromaticity of Benzene | |

Mechanism of electrophilic substitution | |

Halogenation | |

Nitration | |

Friedel craft’s | |

Alkylation and acylation | |

Directive influence of functional group in mono-substituted benzene | |

Organic Compounds Containing Halogens | General methods of preparation |

Properties and reactions | |

Nature of C-X bond | |

Mechanisms of substitution reactions | |

Uses | |

Environmental effects of chloroform and iodoform and freons and ddt | |

Organic Compounds Containing Oxygen | General methods of preparation, properties, reactions and uses. |

Identification of primary, secondary and tertiary alcohols | |

Mechanism of dehydration | |

Acidic nature of phenols | |

Electrophilic substitution reactions | |

Halogenation | |

Nitration and sulphonation | |

Reimer - tiemann reaction | |

Structure of ethers | |

Aldehyde and Ketones | |

Nature of carbonyl group | |

Nucleophilic addition to >C=O group | |

Relative reactivities of aldehydes and ketones | |

Important reactions such as nucleophilic addition reactions | |

Grignard reagent | |

Oxidation and reduction | |

Acidity of hydrogen | |

Aldol condensation | |

Cannizzaro reaction | |

Haloform reaction | |

Chemical tests to distinguish between aldehydes and Ketones | |

Acidic strength and factors affecting of carboxylic acid | |

Organic Compounds Containing Nitrogen | General methods of preparation and properties |

Reactions and uses | |

Nomenclature, classification and structure amines | |

Basic character and identification of primary, secondary and tertiary amines and their basic character | |

Diazonium salts-importance in synthetic organic chemistry. | |

Polymers | General introduction and classification of polymers |

General methods of polymerization-addition and condensation | |

Copolymerization | |

Natural and synthetic rubber and vulcanization | |

Some important polymers with emphasis on their monomers and uses | |

Polythene, nylon, polyester and bakelite | |

Biomolecules | General introduction and importance of biomolecules |

Classification of Carbohydrates | |

Aldoses and ketoses | |

Monosaccharides | |

Constituent monosaccharides of oligosaccharides and polysaccharides | |

Elementary idea of Amino Acids | |

Peptide Bond | |

Polypeptides | |

Proteins | |

Primary, secondary, tertiary and quaternary structure | |

Denaturation of Proteins | |

Enzymes | |

Classification and functions of Vitamins | |

Chemical constitution of DNA and RNA | |

Biological functions of nucleic acids | |

Chemistry in Everyday life | Chemicals in medicines |

Chemicals in food | |

Cleansing agents | |

Principles related to practical chemistry | Detection of extra elements in organic compounds |

Detection of the following functional groups | |

Hydroxyl | |

Carbonyl | |

Carboxyl and amino groups in organic compound | |

Chemistry involved in the preparation of the following | |

Inorganic compounds | |

Mohr’s salt | |

Potash Alum | |

Organic compounds | |

Acetanilide | |

Pnitroacetanilide | |

Aniline yellow | |

Iodoform | |

Chemistry involved in the titrimetric excercises | |

Acids bases and the use of indicators | |

Oxalic-acid vs kmno4 | |

Mohr’s salt vs kmno4 | |

Chemical principles involved in the qualitative salt analysis | |

Cations | |

Anions | |

Enthalpy of solution of cuSO4 | |

Enthalpy of neutralization of strong acid and strong base | |

Preparation of Lyophilic and Lyophobic sols | |

Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature | |

Mathematics | |

Sets, Relations and Functions | Sets and their representation |

Union, intersection and complement of sets and their algebraic properties | |

Power set | |

Relation and types of relations | |

Equivalence relations | |

Functions | |

One-one, into and onto functions | |

Composition of functions | |

Complex numbers and quadratic equations | Complex numbers as ordered pairs of reals |

Representation of complex numbers in the form a+ib and their representation in a plane | |

Argand diagram | |

Algebra of complex numbers | |

Modulus and argument of a complex number | |

Square root of a complex number | |

Triangle inequality | |

Quadratic equations in real and complex number system and their solutions | |

Relation between roots and coefficient | |

Nature of roots | |

Formation of quadratic equations with given roots | |

Matrices and Determinants | Matrices |

Algebra of matrices | |

Types of matrices | |

Determinants and matrices of order two and three | |

Properties of determinants | |

Evaluation of determinants | |

Area of triangles using determinants | |

Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations | |

Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices | |

Permutations and Combinations | Fundamental principle of counting |

Permutation as an arrangement and combination as selection | |

Meaning of p (n and r) and c (n and r) | |

Simple applications | |

Mathematical Induction | Principle of mathematical induction and its simple applications |

Binomial theorem and it's simple applications | Binomial theorem for a positive integral index |

General term and middle term | |

Properties of Binomial coefficients and simple applications | |

Sequences and Series | Arithmetic and Geometric progressions |

Insertion of arithmetic | |

Geometric means between two given numbers | |

Relation between a.m. and g.m | |

Sum upto n terms of special series | |

Arithmetic geometric regression | |

Limit and continuity and differentiability | Real-valued functions |

Algebra of functions | |

Polynomials | |

Rational | |

Trigonometric | |

Logarithmic and exponential functions | |

Inverse functions | |

Graphs of simple functions | |

Limits and continuity and differentiability | |

Differentiation of the sum and difference of two functions | |

Product and quotient of two functions | |

Differentiation of trigonometric and inverse trigonometric | |

Differentiation of logarithmic and exponential | |

Differentiation of composite and implicit functions | |

Derivatives of order upto two | |

Rolle’s and lagrange’s mean value theorems | |

Applications of derivatives | |

Rate of change of quantities | |

Increasing and decreasing functions of monotonic | |

Maxima and minima of functions of one variable | |

Tangents and normals | |

Integral calculus | Integral as an anti-derivative |

Fundamental integrals involving algebraic | |

Trigonometric | |

Exponential and logarithmic functions | |

Integration by substitution, by parts and by partial fractions | |

Integration using trigonometric identities | |

Integral as limit of a sum | |

Fundamental Theorem of Calculus | |

Properties of definite integrals | |

Evaluation of definite integrals | |

determining areas of the regions bounded by simple curves in standard form | |

Differential Equations | Ordinary differential equations, their order and degree |

Formation of differential equations | |

Solution of differential equations by the method of separation of variables | |

Solution of homogeneous and linear differential equations | |

Co-ordinate Geometry | Cartesian system of rectangular co-ordinates in a plane |

Distance formula | |

Section formula | |

Locus and its equation | |

Translation of axes | |

Slope of a line | |

Parallel and perpendicular lines | |

Intercepts of a line on the coordinate axes | |

Straight lines | |

Various forms of equations of a straight line | |

Intersection of lines | |

Angles between two lines | |

Conditions for concurrence of three lines | |

Distance of a point from a line | |

Equations of internal and external bisectors of angles between two lines | |

Coordinates of centroid | |

Orthocentre and circumcentre of a triangle | |

Equation of family of lines passing through the point of intersection of two lines | |

Circles and conic sections | |

Standard form of equation of a circle | |

General form of the equation of a circle, its radius and centre | |

Equation of a circle when the end points of a diameter are given | |

Points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle | |

Equation of the tangent | |

Sections of cones | |

Equations of conic sections | |

Parabola and ellipse and hyperbola in standard forms | |

Condition for y = mx + c to be a tangent and point s of tangency | |

Three dimensional geometry | Coordinates of a point in space |

Distance between two points | |

Section formula | |

Direction ratios and direction cosines | |

Angle between two intersecting lines | |

Skew lines | |

The shortest distance between them and its equation | |

Equations of a line and a plane in different forms | |

Intersection of a line and a plane | |

Coplanar lines | |

Vector Algebra | Vectors and scalars |

Addition of vectors | |

Components of a vector in two dimensions and three dimensional space | |

Scalar and vector products | |

Scalar and vector triple product | |

Statistics and Probability | Measures of Dispersion |

Calculation of mean and median | |

Mode of grouped and ungrouped data | |

Calculation of standard deviation | |

Variance and mean deviation for grouped and ungrouped data | |

Probability of an event, addition and multiplication theorems of probability | |

Baye’s theorem | |

Probability distribution of a random variate | |

Bernoulli trials and binomial distribution | |

Trigonometry | Trigonometrical identities and equations |

Trigonometrical functions | |

Inverse trigonometrical functions and their properties | |

Heights and Distances | |

Mathematical Reasoning | Statements |

Logical operations | |

Understanding of tautology | |

Contradiction | |

Converse and contrapositive | |

Physics | |

Physics and measurement | Physics technology and society |

SI units | |

Fundamental and derived units | |

Least count | |

Accuracy and precision of measuring instruments | |

Errors in measurement | |

Significant Figures | |

Dimensions of Physical quantities | |

Dimensional analysis and its applications | |

Kinematics | Frame of reference |

Motion in a straight line | |

Position Time Graph | |

Speed and velocity | |

Uniform and non uniform motion | |

Average speed and instantaneous velocity uniformly accelerated motion | |

Velocity-time graphs | |

Position-time graphs | |

Relations for uniformly accelerated motion | |

Scalars and Vectors | |

Vector addition and Subtraction | |

Zero Vector | |

Scalar and vector products | |

Unit vector | |

Resolution of a Vector | |

Relative Velocity | |

Motion in a plane | |

Projectile Motion | |

Uniform Circular Motion | |

Laws of Motion | Force and Inertia |

Newton’s First Law of motion | |

Momentum | |

Newton’s second law of motion | |

Impulse | |

Newton’s Third law of Motion | |

Law of conservation of linear omentum and its applications | |

Equilibrium of concurrent forces | |

Static and Kinetic friction | |

Laws of friction | |

Rolling friction | |

Dynamics of uniform circular motion | |

Centripetal force and Its applications | |

Work, Energy and Power | Work done by a constant force and a variable force |

Kinetic and potential energies | |

Workenergy theorem | |

Power | |

Potential energy of a spring | |

Conservation of mechanical energy | |

Conservative and nonconservative forces | |

Elastic and inelastic collisions in one and two dimensions | |

Rotational Motion | Centre of mass of a two-particle system |

Centre of mass of a rigid body | |

Basic concepts of rotational motion | |

Moment of a force, torque, angular momentum, conservation of angular momentum and its applications | |

Radius of gyration | |

Values of moments of inertia for simple geometrical objects | |

Parallel and perpendicular axes theorems and their applications | |

Rigid body rotation | |

Equations of rotational motion | |

Gravitation | The universal law of gravitation |

Acceleration due to gravity and its variation with altitude and depth | |

Kepler’s laws of planetary motion | |

Gravitational potential energy | |

Gravitational potential | |

Escape velocity | |

Orbital velocity of a satellite | |

Geo-stationary satellites | |

Properties of Solids and Liquids | Elastic behaviour |

Stress-strain relationship | |

Hooke’s law | |

Young’s modulus | |

Bulk modulus | |

Modulus of rigidity | |

Pressure due to a fluid column | |

Pascal’s law and its applications | |

Viscosity | |

Stokes’ law | |

Terminal velocity | |

Streamline and turbulent flow | |

Reynolds number | |

Bernoulli’s principle and its applications | |

Surface energy and surface tension | |

Angle of contact | |

Application of surface tension-drops | |

Bubbles and capillary rise | |

Heat and temperature and thermal expansion | |

Specific heat capacity | |

Calorimetry | |

Change of state and latent heat | |

Heat transfer-conduction | |

Convection and radiation | |

Newton’s law of cooling | |

Thermodynamics | Thermal equilibrium |

Zeroth law of thermodynamics | |

Concept of temperature | |

Heat, work and internal energy | |

First law of thermodynamics | |

Second law of thermodynamics | |

Reversible and irreversible processes | |

Carnot engine and its efficiency | |

Kinetic theory of gases | Equation of state of a perfect gas |

Work doneon compressing a gas | |

Kinetic theory of gases | |

Assumptions | |

Concept of pressure | |

Kinetic energy and temperature | |

Rms speed of gas molecules | |

Degrees of freedom | |

Law of equi partition of energy | |

Applications to specific heat capacities of gases | |

Mean free path | |

Avogadro’s number | |

Oscillations and Waves | Periodic motion |

Period | |

Frequency and displacement as a function of time | |

Periodic functions | |

Simple harmonic motion and its equation | |

Phase | |

Oscillations of a spring | |

Restoring force and force constant | |

Energy in S.H.M | |

Kinetic and potential energies | |

Simple pendulum | |

Derivation of expression for its time period | |

Free, forced and damped oscillations | |

Resonance | |

Wave motion | |

Longitudinal and transverse waves | |

Speed of a wave | |

Displacement relation for a progressive wave | |

Principle of superposition of waves | |

Reflection of waves | |

Standing waves in strings and organ pipes | |

Fundamental mode and harmonics | |

Beats | |

Doppler effect in sound | |

Electrostatics | Electric charges |

Conservation of charge | |

Coulomb’s law | |

Forces between two point charges | |

Forces between multiple charges | |

Superposition principle and continuous charge distribution | |

Electric fIeld | |

Electric field due to a point charge | |

Electric field lines | |

Electric dipole | |

Electric field due to a dipole | |

Torque on a dipole in a uniform electric field | |

Electric flux | |

Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire | |

Uniformly charged infinite plane sheet and uniformly charged thin spherical shell | |

Electric potential and its calculation for a point charge | |

Electric dipole and system of charges | |

Equipotential surfaces | |

Electrical potential energy of a system of two point charges in an electrostatic field | |

Conductors and insulators | |

Dielectrics and electric polarization | |

Capacitor | |

Combination of capacitors in series and in parallel | |

Capacitance of a parallel plate capacitor with and without dielectric medium between the plates | |

Energy stored in a Capacitor | |

Currrent electricity | Electric current |

Drift velocity | |

Ohm’s law | |

Electrical resistance | |

Resistances of different materials | |

V-I characteristics of Ohmic and nonohmic conductors | |

Electrical energy and power | |

Electrical resistivity | |

Colour code for resistors | |

Series and parallel combinations of resistors | |

Temperature dependence of resistance | |

Electric Cell and its Internal resistance | |

Potential difference and emf of a cell | |

Combination of cells in series and in parallel | |

Kirchhoff’s laws and their applications | |

Wheatstone bridge | |

Metre bridge | |

Potentiometer principle and its pplications | |

Magnetic effects of current and magnetism | Biot-Savart law and its application to current carrying circular loop |

Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid | |

Force on a moving charge in uniform magnetic and electric fields | |

Cyclotron | |

Force on a current-carrying conductor in a uniform magnetic field | |

Force between two parallel urrentcarrying conductors | |

Definition of Ampere | |

Torque experienced by a current loop in uniform magnetic field | |

Moving coil galvanometer and its current sensitivity and conversion to ammeter and voltmeter | |

Current loop as a magnetic dipole and its magnetic dipole moment | |

Bar magnet as an equivalent solenoid | |

Magnetic field lines | |

Earth’s magnetic field and magnetic elements | |

Para-, dia-, and ferro-magnetic substances | |

Magnetic susceptibility and permeability | |

Hysteresis | |

Electromagnets and Permanent Magnets | |

Electromagnetic Induction and Alternating Currents | Electromagnetic induction |

Faraday’s law | |

Induced emf and current | |

Lenz’s Law | |

Eddy currents | |

Self and mutual inductance | |

Alternating currents | |

Peak and rms value of alternating current/ voltage | |

Reactance and impedance | |

LCR series circuit | |

Resonance | |

Quality factor | |

Power in AC circuits | |

Wattless current | |

AC generator and transformer | |

Electromagnetic Waves | Electromagnetic waves and their characteristics |

Transverse nature of electromagnetic waves | |

Electromagnetic spectrum | |

Applications of e.m waves | |

Optics | Reflection and refraction of light at plane and spherical surfaces |

Mirror formula | |

Total internal reflection and its applications | |

Deviation and Dispersion of light by a prism | |

Lens Formula | |

Magnification | |

Power of a Lens | |

Combination of thin lenses in contact | |

Microscope and astronomical telescope and their magnifyingpowers | |

Wave optics | |

Wavefront and Huygens’ principle | |

Laws of reflection and refraction using huygen’s principle | |

Interference | |

Young’s double slit experiment and expression for fringe width | |

Coherent sources and sustained interference of light | |

Diffraction due to a single slit | |

Width of central maximum | |

Resolving power of microscopes and astronomical telescopes | |

Polarisation | |

Plane polarized light | |

Brewster’s law | |

Uses of plane polarized light and Polaroids | |

Dual nature of matter andradiation | Dual nature of radiation |

Photoelectric effect | |

Hertz and Lenard’s observations | |

Einstein’s photoelectric equation | |

Particle nature of light | |

Matter waves | |

Wave nature of particle | |

De Broglie relation | |

Davissongermer experiment | |

Atoms and Nuclei | Alpha particle scattering experiment |

Rutherford’s model of atom | |

Bohr model | |

Energy levels | |

Hydrogen spectrum | |

Composition and size of nucleus | |

Atomic masses | |

Isotopes | |

Isobars | |

Isotones | |

Radioactivity alpha, beta and gamma particles/rays and their properties | |

Radioactive decay law | |

Mass-energy relation | |

Mass defect | |

Binding energy per nucleon and its variation with mass number | |

Nuclear fission and fusion | |

Electronic Devices | Semiconductors |

Semiconductor diode | |

I-V characteristics in forward and reverse bias | |

Diode as a rectifier | |

I-V characteristics of LED | |

Photodiode | |

Solar cell and Zener diode | |

Zener diode as a voltage regulator | |

Junction transistor | |

Transistor action | |

Characteristics of a Transistor | |

Transistor as an amplifier and oscillator | |

Logic gates | |

Transistor as a switch | |

Communication Systems | Propagation of electromagnetic waves in the atmosphere |

Sky and space wave propagation | |

Need for modulation | |

Amplitude and Frequency Modulation | |

Bandwidth of signals | |

Bandwidth of Transmission medium | |

Basic Elements of a Communication System |

## SBAIEE 2019 Exam Pattern

The exam pattern of SBAIEE 2019 will give a brief understanding about the pattern of the paper, number of questions and marking scheme. Detailed exam pattern is given below for the candidates to refer

Mode of the exam | Computer Based Test |

Exam duration | 2.5 hours |

Total number of questions | 120 |

Type of Questions | Multiple Choice Questions |

## SBAIEE 2019 Mock Test

Practising mock test and sample papers of SBAIEE 2019 will help to figure out the strengths and weaknesses. By solving the sample papers, self-evaluation of the preparation can be done. Candidates will also be able to figure out the pattern of questions expected to appear in the exam.

## SBAIEE 2019 Admit Card

The admit card/ hall ticket of SBAIEE 2019 will be available to download for the candidates once the slot booking process is completed. The hall ticket is expected to be available in April 2019. Candidates must go through the details on the admit card to check for the errors before downloading it. Details like the address of the exam centre will be mentioned in the hall ticket. Candidates must note that the SBAIEE hall ticket is a mandatory document which is required to be carried at the exam hall.

## SBAIEE 2019 Slot Booking

The candidates will have to book the slot by entering the exam centre and time slot according to his/ her preference. To book the slot candidates will have to login by using the registered mobile number of the application number. The slot booking of SBAIEE 2019 is expected to commence from the third week of April. After the slot booking process is completed candidates would be able to download the hall ticket.

## SBAIEE 2019 Exam Centers

State | City |
---|---|

Andaman and Nicobar Islands | Port Blair |

Andhra Pradesh | Anantapur |

Guntur | |

Kadapa | |

Kurnool | |

Nellore | |

Ongole | |

Rajahmundry | |

Tirupati | |

Vijayawada | |

Visakhapatnam | |

Assam | Guwahati |

Bihar | Patna |

Chhattisgarh | Bilaspur |

Gujarat | Ahmedabad |

Maharashtra | Mumbai |

Jharkhand | Ranchi |

Karnataka | Bengaluru |

Kerala | Ernakulam |

Thiruvananthapuram | |

Madhya Pradesh | Bhopal |

Delhi | New Delhi |

Odisha | Bhubaneswar |

Puducherry | Puducherry |

Rajasthan | Kota |

Tamil Nadu | Chennai |

Coimbatore | |

Madurai | |

Nagercoil | |

Salem | |

Thanjavur | |

Tirunelveli | |

Viluppuram | |

Telangana | Hyderabad |

Karimnagar | |

Warangal (Urban) | |

Tripura | Agartala |

Uttar Pradesh | Lucknow |

West Bengal | Kolkata |

## Documents Required at Exam

- SBAIEE Admit Card

## SBAIEE 2019 Result

The result of SBAIEE 2019 is expected to be released in the second week of May. Candidates will have to log in using their application number to check the result. Details like the candidate's name, roll number, and marks obtained will be mentioned in the result of SBAIEE 2019.

## SBAIEE 2019 Counselling

Mode of Counselling: Offline

The counselling of SBAIEE 2019 will tentatively start from the last week of May. The candidates will be called for counselling on the basis of their performance in the exam. Candidates will have to login and download the counselling letter. All the necessary details will be mentioned in the counselling letter. Candidates are required to report at the venue on the prescribed date for document verification.

## Documents Required at Counselling

- counselling letter

## General Information

Contacts: | 4424503150 |

+4 More | |

Relevant Links: | Official Website Link Click Here |

## Questions related to SBAIEE

## News and Articles

### SBAIEE 2018

Sathyabama University has released SBAIEE 2018 result on May 9, 2018. Candidates can ch...

4424503150

4424503151

4424503152

4424503154

4424503155

- English

## Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile