UPES B.Tech Admissions 2026
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
JEE Main Exam Date:21 Jan' 26 - 30 Jan' 26
JEE Main Formulas 2026 - JEE Mains is a competitive entrance exam for engineering programs. To do well on this exam, you must understand the fundamental concepts and formulas of Mathematics, Physics, and Chemistry. Aspirants preparing for the JEE Mains can check the JEE Main formulas 2026 available on this page. JEE Mains is conducted by the National Testing Agency (NTA). This exam evaluates a candidate's proficiency in Physics, Chemistry, and Mathematics. Since there are many formulas in these three subjects, candidates need a way to recall them for revision purposes. JEE Main important formulas in Math, Physics, and Chemistry are integral to calculating answers for numerical questions according to the JEE Main 2026 syllabus.
Candidates can check the previous year’s closing ranks for the female-only quota at National Institute of Technology (NIT) Warangal from the table below to understand the admission trend for JEE Main 2026.
Academic Program Name | Opening Rank | Closing Rank |
Bio Technology (4 Years, Bachelor of Technology) | 17441 | 33808 |
Chemical Engineering (4 Years, Bachelor of Technology) | 17846 | 24875 |
Chemistry (5 Years, Integrated Master of Science) | 42302 | 42302 |
Civil Engineering (4 Years, Bachelor of Technology) | 19212 | 36822 |
Computer Science and Engineering ( Artificial Intelligence & Data Science) (4 Years, Bachelor of Technology) | 4781 | 5380 |
Computer Science and Engineering (4 Years, Bachelor of Technology) | 3857 | 4938 |
Electrical and Electronics Engineering (4 Years, Bachelor of Technology) | 11419 | 14231 |
Electronics and Communication Engineering (4 Years, Bachelor of Technology) | 6422 | 8861 |
Electronics and Communication Engineering (VLSI Design and Technology) (4 Years, Bachelor of Technology) | 8009 | 8009 |
Mathematics (5 Years, Integrated Master of Science) | 29370 | 29370 |
Mathematics and Computing (4 Years, Bachelor of Technology) | 5639 | 5639 |
Mechanical Engineering (4 Years, Bachelor of Technology) | 20317 | 23427 |
Metallurgical and Materials Engineering (4 Years, Bachelor of Technology) | 27014 | 39860 |
Physics (5 Years, Integrated Master of Science) | 29164 | 29164 |
NIT Warangal JEE Main closing rank. (Image: Facebook Account)
This Story also Contains
Candidates must make a handy note of all important formulas to revise frequently. Candidates must have a good command of each topic and the formulas to crack the JEE Main 2026 exam to ace the test. Through this article, students can find the provided JEE Main formulas for all three subjects. Knowing important formulas in depth can help you solve problems fast and accurately, which is important for scoring well in JEE Main. All the formulas given here are according to the JEE Main 2026 syllabus strictly. JEE all formulas pdf subject wise are given below.
The exam is divided into two main sections:
Section A: The quizzes contained in this section are 20 MCQs for each course. What the MCQ requires is four options and only one of them is the right answer.
Section B: This section has 5 numerical value questions for each of the subject areas, and the candidate only has to answer all five of these. These numerical value questions have to be answered accurately, sometimes to the second decimal place.
Aspirants preparing for JEE Mains must remember that along with concepts one needs to revise and remember the formulas, which are very important while solving any problems. As JEE Main Physics formulas are given below, these formulas need to be memorized daily as direct questions and formulas are asked in exams. Students can also solve JEE Main Chapter Wise PYQs.
Physics and Measurement
Mean absolute error
$\Delta \bar{a}=\frac{\left|\Delta a_1\right|+\left|\Delta a_2\right|+\ldots\left|\Delta a_n\right|}{n}$
$\begin{aligned} & \text { Relative error }=\frac{\Delta \bar{a}}{a_m} \\ & \Delta \bar{a}=\text { mean absolute error } \\ & a_m=\text { mean value }\end{aligned}$
Percentage error $=\frac{\Delta \bar{a}}{a_m} \times 100 \%$
Kinematics
Some important Formulas of differentiation
$\begin{aligned}
& \frac{d}{d x}\left(x^n\right)=n x^{n-1} \\
& \frac{d}{d x} \sin x=\cos x \\
& \frac{d}{d x} \cos x=-\sin x \\
& \frac{d}{d x} \tan x=\sec ^2 x \\
& \frac{d}{d x} \cot x=-\csc ^2 x \\
& \frac{d}{d x} \sec x=\sec x \tan x \\
& \frac{d}{d x} \csc x=-\csc x \cot x \\
& \frac{d}{d x} e^x=e^x \\
& \frac{d}{d x} a^x=a^x \ln a \\
& \frac{d}{d x} \ln |x|=\frac{1}{x}
\end{aligned}$
Some important Formulas of integration
$\begin{aligned}
& \int x^n d x=\frac{x^{n+1}}{n+1}+C \\
& \int \frac{d x}{x}=\ln |x|+C \\
& \int e^x d x=e^x+C \\
& \int a^x d x=\frac{1}{\ln a} a^x+C \\
& \int \ln x d x=x \ln x-x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \cos x d x=\sin x+C \\
& \int \tan x d x=-\ln |\cos x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=-\ln |\csc x+\cot x|+C \\
& \int \sec 2 x d x=\tan x+C \\
& \int \csc c^2 x d x=-\cot x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \csc x \cot x d x=-\csc x+C \\
& \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+C \\
& \int \frac{d x}{a^2+x^2}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C \\
& \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1} \frac{|x|}{a}+C
\end{aligned}$
$\vec{A} \times \vec{B}=A B \sin \theta$
Average angular velocity-
$\omega_{a v g}=\frac{\Delta \theta}{\Delta t}$
Time of flight
$T=\frac{2 U \sin \theta}{g \cos \beta}$
Range along incline plane
$R=\frac{2 u^2 \cdot \sin (\alpha-\beta) \cdot \cos \alpha}{g \cos ^2 \beta}$
Laws of motion
Work Energy and Power
Average power-
$P_{a v}=\frac{\Delta w}{\Delta t}=\frac{\int_0^t p \cdot d t}{\int_0^t d t}$
Instantaneous power-
$P=\frac{d w}{d t}=P=\vec{F} \cdot \vec{v}$
Where, $\vec{F} \rightarrow$ force
$\vec{v} \rightarrow \text { velocity }$
In Perfectly Inelastic Collision:
When the colliding bodies are moving in the same direction
$\begin{aligned}
& m_1 u_1+m_2 u_2=\left(m_1+m_2\right) v \\
& v=\frac{m_1 u_1+m_2 u_2}{\left(m_1+m_2\right)}
\end{aligned}$
Loss in kinetic energy
$\begin{aligned}
& \Delta K \cdot E=\left(\frac{1}{2} m_1 u_1^2+\frac{1}{2} m_2 u_2^2\right)-\left(\frac{1}{2}\left(m_1+m_2\right) V^2\right) \\
& \Delta K \cdot E=\frac{1}{2}\left(\frac{m_1 m_2}{m_1+m_2}\right)\left(u_1-u_2\right)^2
\end{aligned}$
When the colliding bodies are moving in the opposite direction
$\begin{aligned}
& m_1 u_1+m_2\left(-u_2\right)=\left(m_1+m_2\right) v \\
& v=\frac{m_1 u_1-m_2 u_2}{m_1+m_2}
\end{aligned}$
Loss in kinetic energy
$\begin{aligned}
& \Delta K \cdot E=\left(\frac{1}{2} m_1 u_1^2+\frac{1}{2} m_2 u_2^2\right)-\left(\frac{1}{2}\left(m_1+m_2\right) V^2\right) \\
& \Delta K \cdot E=\frac{1}{2}\left(\frac{m_1 m_2}{m_1+m_2}\right)\left(u_1+u_2\right)^2
\end{aligned}$
Center of mass:
For a system of N discrete particles
$\begin{aligned}
x_{c m} & =\frac{m_1 x_1+m_2 x_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots} \\
y_{c m} & =\frac{m_1 y_1+m_2 y_2+m_3 y_3 \ldots \ldots \ldots}{m_1+m_2+m_3 \ldots \ldots} \\
z_{c m} & =\frac{m_1 z_1+m_2 z_2+m_3 z_3 \ldots \ldots \ldots}{m_1+m_2+m_3 \ldots \ldots}
\end{aligned}$
Velocity of the centre of mass
$\vec{v}_{C M}=\frac{m_1 \vec{v}_1+m_2 \vec{v}_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots \ldots}$
Acceleration of centre of mass
$\vec{a}_{C M}=\frac{m_1 \vec{a}_1+m_2 \vec{a}_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots .}$
Moment of inertia of a particle
$I=m r^2$
Radius of gyration (K): $K=\sqrt{\frac{I}{M}}$
Gravitation
$\vec{I}=\frac{\vec{F}}{m}$
$\vec{I} \rightarrow G$. field Intensity
$m \rightarrow$ mass of object
$\vec{f} \rightarrow$ Gravitational Force
Gravitational Potential: $\begin{aligned} & V=-\int \vec{I} \cdot \overrightarrow{d r} \\ & V \rightarrow \text { Gravitational potential } \\ & I \rightarrow \text { Field Intensity } \\ & d r \rightarrow \text { small distance }\end{aligned}$
Mechanical Properties of Solids
$\begin{gathered}
\text { Volumestress }=\frac{F}{A}=\text { Pressure } \\
\qquad B=-\frac{P}{\Delta V / V}
\end{gathered}$
where $\mathrm{P}=$ increase in pressure, $\mathrm{V}=$ original volume, $\Delta V=$ change in volume
Mechanical Properties of Fluids
Where $\mathrm{F}_{\mathrm{B}}=$ Buoyant force
$\rho=\text { density of the fluid }$
V= Volume of the solid body immersed in the liquid or Volume of the fluid displaced
Relative density of a body
$R . D=\frac{\text { density of body }}{\text { density of water }}$
Bernoulli's equation $P+\rho g h+\frac{1}{2} \rho v^2=\text { constant }$
$P \rightarrow$ Pressure energy per unit volume $\rho g h \rightarrow$ Potential Energy per unit volume $\frac{1}{2} \rho v^2 \rightarrow$ Kinetic Energy per unit volume
Velocity gradient $=\frac{\text { chane in velocity }}{\text { change in height }}$
Kinetic theory of Gases
$r \propto \frac{1}{\sqrt{\rho}} \propto \frac{1}{\sqrt{M}} \propto V_{r m s}$
Where, $r=$ rate of diffusion of gas
$\rho=$ Density of the gas
M = Molecular weight of the gas
$V_{r m s}=$ Root mean square velocity
Ideal gas equation $P V=n R T$
Degree of freedom
$f=3 N-R$
Where
$N=$ no. of particle
$R=$ no. of relation
Thermodynamics
Heat transfer -
$\begin{aligned}
& \Delta Q=m L_{\text {(for change of state) }} \\
& \Delta Q=m s \Delta T \text { (for change in temperature) }
\end{aligned}$
First law of thermodynamics $\Delta Q=\Delta U+\Delta W$
Efficiency of Heat Engine $\eta=\frac{\text { Work done }}{\text { Heat input }}=\frac{W}{Q_1}$
Entropy $d S=\frac{\text { Heat absorbed by system }}{\text { Absolute temperature }}$ or $d S=\frac{d Q}{T}$
Oscillations
1. For Displacement:-
$x=A \operatorname{Sin}(w t+\phi) ;$ where $\phi$ is initial phase or epoch and $(\omega t+\phi)$ is called as phase.
Various displacement equations:-
(1) $x=A$ Sin $\omega t \Rightarrow$ when particle starts from mean position towards right.
(2) $x=-$ ASinwt $\Rightarrow$ when particle starts from mean position towards left.
(3) $x=A C o s w t \Rightarrow$ when particle starts from right extreme position towards left
(4) $x=-$ ACoswt $\Rightarrow$ when particle starts from left extreme position towards Right.
2. For Velocity (v):-
$$
\begin{aligned}
x & =A \operatorname{Sin}(\omega t+\phi) \\
\Rightarrow v & =\frac{d x}{d t}=A \omega \operatorname{Cos}(\omega t+\phi)=A \omega \operatorname{Sin}\left(\omega t+\phi+\frac{\pi}{2}\right)
\end{aligned}
$$
3. For Acceleration:-
$$
\begin{aligned}
x & =A \operatorname{Sin}(\omega t+\phi) \\
\Rightarrow v & =\frac{d x}{d t}=A \omega \operatorname{Cos}(\omega t+\phi)=A \omega \operatorname{Sin}\left(\omega t+\phi+\frac{\pi}{2}\right) \\
\Rightarrow a & =\frac{d v}{d t}=-A \omega^2 \operatorname{Sin}(\omega t+\phi)=A \omega^2 \operatorname{Sin}(\omega t+\phi+\pi)=-\omega^2 x
\end{aligned}
$$
Differential equation of SHM $\begin{aligned} & \frac{d v}{d t}=-\omega^2 x \\ & \Rightarrow \frac{d}{d t}\left(\frac{d x}{d t}\right)=-\omega^2 x \\ & \Rightarrow \frac{d^2 x}{d t^2}+\omega^2 x=0\end{aligned}$
Kinetic Energy $K=\frac{1}{2} m v^2$
Spring Force $F=-k x$
Electric Charges and Fields
Electrostatic Potential and Capacitance
Current Electricity
Moving Charges and Magnetism
Magnetism and Matter
Electromagnetic Induction
Electromagnetic Waves
$\lambda=\frac{\lambda_o}{\mu}$
$\lambda_o=$ Wavelength in vacuum
$\mu$ = Refractive index of medium
Ray Optics and Optical Instruments
Dual Nature of Matter and Radiation
Also Read: JEE Main 2026 Important Formulas for Physics PDF
Candidates while studying the chemistry, they need to revise and practice the chemical equations and symbols, to some chemistry is tough subject but when candidates practices chemical equations, revises the properties, formulas and symbols they will have command over the subject Candidates can check the JEE Main Chemistry formulas below
Some Basic Concepts in chemistry
Atomic Structure
Line Spectrum of Hydrogen-like atoms
$\frac{1}{\lambda}=R Z^2\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$
Bohr radius of nth orbit:
$\mathrm{r}_{\mathrm{n}}=0.529 \frac{\mathrm{n}^2}{\mathrm{Z}} \mathrm{~A}^0$
Velocity of electron in nth orbit:
$\mathrm{V}_{\mathrm{n}}=\left(2.18 \times 10^6\right) \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{~m} / \mathrm{s}$
where Z is atomic number
Total energy of electron in nth orbit:
$\mathrm{E}_{\mathrm{n}}=-13.6 \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{eV}=-2.18 \times 10^{-18} \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~J}$
where Z is the atomic number
Heisenberg Uncertainty Principle: $\Delta x . \Delta P \geq \frac{h}{4 \pi}$
$\mathrm{E}_{\mathrm{n}}=-\frac{1312 \times \mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~kJ} / \mathrm{mol}$
Chemical Thermodynamics
Work done in a reversible isothermal process
$\begin{aligned}
& \mathrm{W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{~V}_2}{\mathrm{~V}_1} \\
& \mathrm{~W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{P}_1}{\mathrm{P}_2}
\end{aligned}$
Work done in an irreversible isothermal process
Work $=-\mathrm{P}_{\text {ext. }}\left(\mathrm{V}_2-\mathrm{V}_1\right)$
That is, Work $=-\mathrm{P} \times \Delta \mathrm{V}$
$W=\Delta E=n C_V \Delta T$
Enthalpy: $H=U+p V$
First Law of Thermodynamics: $\Delta U=q+W$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta(\mathrm{S})$
$\Delta G=-n F E$
Equilibrium
$\mathrm{mA}+\mathrm{nB} \rightleftharpoons \mathrm{pC}+\mathrm{qD}$ $\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\frac{[\mathrm{C}]^{\mathrm{p}}[\mathrm{D}]^{\mathrm{q}}}{[\mathrm{A}]^{\mathrm{m}}[\mathrm{B}]^{\mathrm{n}}}=\mathrm{K}_{\mathrm{c}}$
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
$\mathrm{k}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\text { Salt }]}{\text { Acid }}$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log _{10} \frac{[\text { Salt }]}{[\text { Base }]}$
ELECTROCHEMISTRY
$\begin{aligned}
& \frac{E_1}{E_2}=\frac{M_1}{M_2} \text { or } \frac{W_1}{W_2}=\frac{Z_1}{Z_2} \\
& E_1=\text { equivalent weight } \\
& E_2=\text { equivalent weight }
\end{aligned}$
W or M = mass deposited
$\begin{aligned} & E_{\text {cell }} \text { or } E M F=\left[E_{\text {red }}(\text { cathode })-E_{\text {red }}(\text { anode })\right] \\ & E_{\text {eell }}^{\circ} \text { or } E M F^{\circ} \\ & =\left[E_{\text {red }}^{\circ}(\text { cathode })-E_{\text {red }}^{\circ}(\text { anode })\right]\end{aligned}$
$\mathrm{E}=\mathrm{E}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln Q$
$\mathrm{xA}+\mathrm{yB} \xrightarrow{\mathrm{ne}^{-}} \mathrm{mC}+\mathrm{nD}$
The emf can be calculated as
$\text { Ecell }=\mathrm{E}^{\circ} \text { cell }-\frac{0.059}{\mathrm{n}} \log \frac{[\mathrm{C}]^{\mathrm{m}}[\mathrm{D}]^{\mathrm{n}}}{[\mathrm{~A}]^x[\mathrm{~B}]^{\mathrm{y}}}$
$\wedge_{\mathrm{m}}=\kappa \times \frac{1000}{\mathrm{c}}$
$\wedge_{\text {eq }}=\frac{1000 \times \kappa}{\mathrm{N}}$
Solutions
Chemical kinetics
Unit of Rate Constant-
$\begin{aligned}
& \text { The differential rate expression for } \mathrm{n}^{\text {th }} \text { order reaction is as follows: } \\
& \qquad-\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \\
& \text { or } \quad \mathrm{k}=\frac{\mathrm{dx}}{(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \mathrm{dt}}=\frac{(\text { concentration })}{(\text { concentration })^{\mathrm{n}} \text { time }}=(\text { conc. })^{1-\mathrm{n}} \text { time }^{-1}
\end{aligned}$
For the first-order reaction,
$k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_0}{[\mathrm{R}]}$
$t_{1 / 2}=\frac{0.693}{k}$
For any general nth order reaction, it is evident that,
$\mathrm{t}_{\frac{1}{2}} \propto[\mathrm{~A}]_0^{1-\mathrm{n}}$
It is to be noted that the above formula is applicable for any general nth-order reaction except $\mathrm{n}=1$.
Arrhenius Equation: $\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
$\log \frac{\mathrm{K}_2}{\mathrm{~K}_1}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right]$
Coordination Compounds
$\mathrm{EAN}=Z-O+2 L$
Where:
$\mathbf{Z}=$ Atomic number of the central metal atom/ion
$\mathbf{O}=$ Oxidation state of the metal atom/ion
L = Number of ligands (or donor atoms) $\times$ number of electrons donated per ligand
Crystal Field Stabilization Energy (CFSE):
Octahedral:
$\mathrm{CFSE}=(-0.4 x+0.6 y) \Delta_0$
Tetrahedral:
$\mathrm{CFSE}=(-0.6 x+0.4 y) \Delta_t$
where $x=t_2 g$ electrons, $y=$ e_g electrons
d- & f-Block Elements
Magnetic Moment:
$\mu=\sqrt{n(n+2)} \mathrm{BM}$
Chemical Bonding and Molecular Structure
Formal Charge:
$\text { F.C. }=V-N-\frac{B}{2}$
( $\mathrm{V}=$ valence electrons, $\mathrm{N}=$ non-bonding, $\mathrm{B}=$ bonding electrons)
Bond Order (Molecular Orbital Theory):
$\text { Bond Order }=\frac{\left(N_b-N_a\right)}{2}$
Dipole Moment:
$\mu=q \times d$
( $q=$ charge,$d=$ distance between charges)
Some Basic Principles of Organic Chemistry
Application of Inductive Effect
The decreasing -I effect or increasing +I effect order is as follows:
$\begin{aligned}
& -\mathrm{NH}_3+>-\mathrm{NO}_2>-\mathrm{SO}_2 \mathrm{R}>-\mathrm{CN}>-\mathrm{SO}_3 \mathrm{H}>-\mathrm{CHO}>-\mathrm{CO}>-\mathrm{COOH}>-\mathrm{F}>-\mathrm{COCl}>-\mathrm{CONH}_2>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}>-\mathrm{OR}>-\mathrm{OH}>-\mathrm{NR}_2>-\mathrm{NH}_2> \\
& -\mathrm{C}_6 \mathrm{H}_5>-\mathrm{CH}=\mathrm{CH}_2>-\mathrm{H}
\end{aligned}$
Degree of Unsaturation (DU or IHD):
$\mathrm{DU}=\frac{2 C+2-H+N-X}{2}$
( $\mathrm{C}=$ carbon, $\mathrm{H}=$ hydrogen, $\mathrm{N}=$ nitrogen, $\mathrm{X}=$ halogen)
Hydrocarbons
Carboxylic Acids and Derivatives
Method of Preparation of Carboxylic Acid
Also Read: JEE Main 2026 Chemistry Important Formulas PDF
Candidates must go through all the formulas and practice the mathematical problems. Without formulas you cannot solve any problem though you know how to solve it. Revising the formulas daily is very important. Here we have provided the Mathematics formulas for JEE Mains.
Sets, Relations, and Functions
Complex Numbers and Quadratic Equations
Matrices and Determinants
Sequence and Series
Trigonometry
Co-ordinate Geometry
Limit, Continuity And Differentiability
$(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3 \ldots$
where, $|x|<1$
DIFFERENTIATION $\frac{d}{d x}($ constant $)=0$ $\frac{d}{d x}\left(\mathbf{x}^{\mathbf{n}}\right)=\mathbf{n} \mathbf{x}^{\mathbf{n}-\mathbf{1}}$ $\frac{d}{d x}\left(\mathbf{a}^{\mathbf{x}}\right)=\mathbf{a}^{\mathbf{x}} \log _{\mathrm{e}} \mathbf{a}$
$\frac{d}{d x}\left(\mathbf{e}^{\mathbf{x}}\right)=\mathbf{e}^{\mathbf{x}} \log _{\mathbf{e}} \mathbf{e}=\mathbf{e}^{\mathbf{x}}$
$\frac{d}{d x}\left(\log _{\mathbf{a}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x} \log _{\mathbf{e}} \mathbf{a}}, \quad \mathbf{x} \neq \mathbf{0}$
$\frac{d}{d x}\left(\log _{\mathrm{e}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x}}, \quad \mathbf{x} \neq \mathbf{0}$
Sum Rule $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$
Difference Rule $\frac{d}{d x}(f(x)-g(x))=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))$
Constant Multiple Rule $\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))$
Product Rule $\frac{d}{d x}(f(x) g(x))=g(x) \cdot \frac{d}{d x}(f(x))+f(x) \cdot \frac{d}{d x}(g(x))$
Integral Calculus
Differential Equations
Vector Algebra
$\vec{a} \times \vec{b}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|$
Statistics and Probability
Median of Ungrouped Data If $n$ is odd :
$\text { Median }=\left(\frac{n+1}{2}\right)^{t h} \text { observation }$
If $\mathbf{n}$ is even :
$\text { Median }=\frac{\text { Value of }\left(\frac{n}{2}\right)^{t h} \text { observation }+ \text { Value of }\left(\frac{n}{2}+1\right)^{t h} \text { observation }}{?}$
Median of Continuous Frequency Distribution: Median $=l+\frac{\left(\frac{N}{2}-c f\right)}{f} \times h$ where,
l = lower limit of median class,
N = number of observations,
cf $=$ cumulative frequency of class preceding the median class,
$\mathrm{f}=$ frequency of median class,
$\mathrm{h}=$ class size (width) (assuming class size to be equal).
Mode $=l+\left(\frac{f_1-f_0}{2 f_1-f_0-f_2}\right) \times h$
where
$\mathrm{l}=$ lower limit of the modal class,
$\mathrm{h}=$ size of the class interval (assuming all class sizes to be equal),
$\mathrm{f}_1=$ frequency of the modal class,
$\mathrm{f}_0=$ frequency of the class preceding the modal class,
$f_2=$ frequency of the class succeeding the modal class.
Standard Deviation $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^n\left(x_i-\bar{x}\right)^2}$
Also Read: JEE Main 2026 Important Formulas for Maths PDF
Also refer to JEE Main- Top 30 Most Repeated Questions & Topics
Students often find it challenging to learn formulas for the JEE Main, but with the right approach, they can effectively remember them. Given below are some points to remember:
1. Students must try to understand why a formula works. For example, derivations in Physics or Maths often follow a logical pattern.
2. Then break down formulas into chapters or topics.
3. To learn these formulas easily, try to make a formula notebook.
4. Sometimes students must try to make Mnemonics and short tricks, as it helps in quick revision.
5. Try to solve as many questions and revise
6. Try to use diagrams and flowcharts.
Frequently Asked Questions (FAQs)
Revision is the best way to remember all the formulas. Practice more questions based on formulas and revise the formulas on a daily basis.
Yes, you can derive the formula during the exam but it is very time-consuming so candidates must learn all the formulas to save time during the exam.
General formula for alkanes is CnH2n+2 , alkenes is CnH2n and for alkynes is C
nH2n-2 respectively.
The formula of molecular mass in terms of vapor density is
Molecular mass = 2 * vapor density
On Question asked by student community
Hello dear candidate,
Could you please specify about which exam you are talking about and which college for example :- VITEEE for VIT or SRMJEE for SRM for us to tell you about what rank you should aim to get a CSE seat there.
I hope you find this helpful.
Thank you.
Hello,
As you asked for JEE mains Hindi-medium question paper I've attached a link below from this you can download your resources.
https://engineering.careers360.com/hi/articles/jee-main-question-paper
Thank you
Hello aspirant,
Make a combined study plan that allots time for all subjects, with an emphasis on the overlapping themes of chemistry and physics, to get ready for both JEE Main and NEET. To comprehend the various patterns of the two exams and enhance time management, master the NCERT textbooks first, then apply the same method of completing last year's papers and taking practice exams.
Thank you
Hello aspirant,
Students must comprehend the JEE Mains syllabus and be aware of the subjects that will be covered in the test before they can start preparing for it. Obtaining the appropriate materials, practice exams, and past year's question papers is also essential. Students can easily pass JEE Mains if they have the proper mindset and all of these resources at their disposal.
For more information, you can visit our site through following link:
https://engineering.careers360.com/articles/how-prepare-for-jee-main
Thank you
Hello aspirant,
The first step in preparing for JEE 2027 is to familiarize yourself with the physics, chemistry, and math syllabus and exam format. Using NCERT and common reference materials, concentrate on solidifying your Class 11 topics. Practice frequently and complete 20–30 multiple-choice questions per day. Finish the Class 12 curriculum by 2025, then start taking chapter-by-chapter and practice exams. Starting in 2026, make extensive revisions, work through papers from prior years, and concentrate on strengthening your weak points. Take full-length mocks within the last six months and evaluate your performance. For optimum outcomes, balance school, coaching, and self-study, be consistent, and revise every day.
Thank you
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
AICTE ‘Platinum’ institute | NIRF 2024 Rank Band 151-200 under the engineering category | Tier-1 accreditation by NBA | Merit & Sports Scholarships
Dive into everything you need to know about IITs—from eligibility and cutoffs to fees and placements.
Ranked #5 among Top Emerging Engineering Institutes | Key Recruiters : Amazon, Accenture, KPMG, EY, Capgemini etc
NAAC A+ Grade | Among top 100 universities of India (NIRF 2024) | 40 crore+ scholarships distributed
Hands on Mentoring and Code Coaching | Cutting Edge Curriculum with Real World Application