JEE Main Important Formulas 2026 for Physics, Chemistry, Maths

JEE Main Important Formulas 2026 for Physics, Chemistry, Maths

Upcoming Event

JEE Main Exam Date:21 Jan' 26 - 30 Jan' 26

Shivani PooniaUpdated on 15 Oct 2025, 07:28 PM IST

JEE Main Formulas 2026 - JEE Mains is a competitive entrance exam for engineering programs. To do well on this exam, you must understand the fundamental concepts and formulas of Mathematics, Physics, and Chemistry. Aspirants preparing for the JEE Mains can check the JEE Main formulas 2026 available on this page. JEE Mains is conducted by the National Testing Agency (NTA). This exam evaluates a candidate's proficiency in Physics, Chemistry, and Mathematics. Since there are many formulas in these three subjects, candidates need a way to recall them for revision purposes. JEE Main important formulas in Math, Physics, and Chemistry are integral to calculating answers for numerical questions according to the JEE Main 2026 syllabus.

LiveJEE Mains 2026 Registration LIVE: NTA to begin registrations soon at jeemain.nta.nic.in; exam dates announcedOct 23, 2025 | 7:30 PM IST

Candidates can check the previous year’s closing ranks for the female-only quota at National Institute of Technology (NIT) Warangal from the table below to understand the admission trend for JEE Main 2026.

Academic Program NameOpening RankClosing Rank
Bio Technology (4 Years, Bachelor of Technology)1744133808
Chemical Engineering (4 Years, Bachelor of Technology)1784624875
Chemistry (5 Years, Integrated Master of Science)4230242302
Civil Engineering (4 Years, Bachelor of Technology)1921236822
Computer Science and Engineering ( Artificial Intelligence & Data Science) (4 Years, Bachelor of Technology)47815380
Computer Science and Engineering (4 Years, Bachelor of Technology)38574938
Electrical and Electronics Engineering (4 Years, Bachelor of Technology)1141914231
Electronics and Communication Engineering (4 Years, Bachelor of Technology)64228861
Electronics and Communication Engineering (VLSI Design and Technology) (4 Years, Bachelor of Technology)80098009
Mathematics (5 Years, Integrated Master of Science)2937029370
Mathematics and Computing (4 Years, Bachelor of Technology)56395639
Mechanical Engineering (4 Years, Bachelor of Technology)2031723427
Metallurgical and Materials Engineering (4 Years, Bachelor of Technology)2701439860
Physics (5 Years, Integrated Master of Science)2916429164

The testing agency will begin the NTA JEE Mains 2026 registration on the official website, jeemain.nta.nic.in.NIT Warangal JEE Main closing rank. (Image: Facebook Account)

Read More

This Story also Contains

  1. JEE Main Formulas 2026 for Physics, Chemistry, Maths
  2. JEE Main 2026 Exam Pattern
  3. JEE Main Formulas for Physics 2026
  4. JEE Main Formulas for Chemistry 2026
  5. JEE Main formulas for Maths 2026
  6. Tips to Learn the Formula for JEE Main 2026
JEE Main Important Formulas 2026 for Physics, Chemistry, Maths
JEE Main All Formulas 2026 for Physics, Chemistry, Maths

JEE Main Formulas 2026 for Physics, Chemistry, Maths

Candidates must make a handy note of all important formulas to revise frequently. Candidates must have a good command of each topic and the formulas to crack the JEE Main 2026 exam to ace the test. Through this article, students can find the provided JEE Main formulas for all three subjects. Knowing important formulas in depth can help you solve problems fast and accurately, which is important for scoring well in JEE Main. All the formulas given here are according to the JEE Main 2026 syllabus strictly. JEE all formulas pdf subject wise are given below.

JEE Main 2026 Exam Pattern

The exam is divided into two main sections:

Section A: The quizzes contained in this section are 20 MCQs for each course. What the MCQ requires is four options and only one of them is the right answer.

Section B: This section has 5 numerical value questions for each of the subject areas, and the candidate only has to answer all five of these. These numerical value questions have to be answered accurately, sometimes to the second decimal place.

JEE Main Formulas for Physics 2026

Aspirants preparing for JEE Mains must remember that along with concepts one needs to revise and remember the formulas, which are very important while solving any problems. As JEE Main Physics formulas are given below, these formulas need to be memorized daily as direct questions and formulas are asked in exams. Students can also solve JEE Main Chapter Wise PYQs.

Physics and Measurement

  1. Relative density $=\frac{\text { density of object }}{\text { density of water at } 4^{\circ} \mathrm{c}}$
  2. Absolute Error for $\mathrm{n}^{\text {th }}$ reading $=\Delta a_n=a_m-a_n=$ true value - measured value
  3. Mean absolute error

    $\Delta \bar{a}=\frac{\left|\Delta a_1\right|+\left|\Delta a_2\right|+\ldots\left|\Delta a_n\right|}{n}$

  4. $\begin{aligned} & \text { Relative error }=\frac{\Delta \bar{a}}{a_m} \\ & \Delta \bar{a}=\text { mean absolute error } \\ & a_m=\text { mean value }\end{aligned}$

  5. Percentage error $=\frac{\Delta \bar{a}}{a_m} \times 100 \%$

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

Cambridge Institute of Technology B.Tech Admissions 2025

Highest CTC 53.5 LPA | Average CTC 7.2 LPA | 200+ Companies | 790+ Multiple offers

Kinematics

  1. Some important Formulas of differentiation

    $\begin{aligned}
    & \frac{d}{d x}\left(x^n\right)=n x^{n-1} \\
    & \frac{d}{d x} \sin x=\cos x \\
    & \frac{d}{d x} \cos x=-\sin x \\
    & \frac{d}{d x} \tan x=\sec ^2 x \\
    & \frac{d}{d x} \cot x=-\csc ^2 x \\
    & \frac{d}{d x} \sec x=\sec x \tan x \\
    & \frac{d}{d x} \csc x=-\csc x \cot x \\
    & \frac{d}{d x} e^x=e^x \\
    & \frac{d}{d x} a^x=a^x \ln a \\
    & \frac{d}{d x} \ln |x|=\frac{1}{x}
    \end{aligned}$

  2. Some important Formulas of integration

    $\begin{aligned}
    & \int x^n d x=\frac{x^{n+1}}{n+1}+C \\
    & \int \frac{d x}{x}=\ln |x|+C \\
    & \int e^x d x=e^x+C \\
    & \int a^x d x=\frac{1}{\ln a} a^x+C \\
    & \int \ln x d x=x \ln x-x+C \\
    & \int \sin x d x=-\cos x+C \\
    & \int \cos x d x=\sin x+C \\
    & \int \tan x d x=-\ln |\cos x|+C \\
    & \int \cot x d x=\ln |\sin x|+C \\
    & \int \sec x d x=\ln |\sec x+\tan x|+C \\
    & \int \csc x d x=-\ln |\csc x+\cot x|+C \\
    & \int \sec 2 x d x=\tan x+C \\
    & \int \csc c^2 x d x=-\cot x+C \\
    & \int \sec x \tan x d x=\sec x+C \\
    & \int \csc x \cot x d x=-\csc x+C \\
    & \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+C \\
    & \int \frac{d x}{a^2+x^2}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C \\
    & \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1} \frac{|x|}{a}+C
    \end{aligned}$

  3. $\vec{A} \times \vec{B}=A B \sin \theta$

  4. $\begin{aligned} \text { Speed } & =\frac{\text { Change in distance }}{\text { change in time }} \\ v & =\frac{\text { distance }}{\text { time }}\end{aligned}$
  5. Average speed $=\frac{\text { total distance covered }}{\text { total time taken }}$
  6. $\begin{aligned} & \text { Average Velocity }=\frac{\text { Total Displacement }}{\text { Total time taken }}, \\ & \vec{V}_{\text {avg }}=\frac{\vec{S}_{\text {net }}}{t}\end{aligned}$
  7. $\vec{a}=\frac{\text { change in velocity }}{\text { time taken }}=\frac{\vec{v}_f-\vec{v}_i}{t}$
  8. $v=u+a t$
  9. $s=u t+\frac{1}{2} a t^2$
  10. $v^2-u^2=2 a s$
  11. Average angular velocity-

    $\omega_{a v g}=\frac{\Delta \theta}{\Delta t}$

  12. Time of flight

    $T=\frac{2 U \sin \theta}{g \cos \beta}$

  13. Range along incline plane

    $R=\frac{2 u^2 \cdot \sin (\alpha-\beta) \cdot \cos \alpha}{g \cos ^2 \beta}$

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

Laws of motion

  1. Inertial mass $(k g)=\frac{F}{a}$
  2. Recoiling of Gun $\begin{aligned} & F=V_{\text {rel }}\left(\frac{d m}{d t}\right)=V(\mathrm{mn}) \\ & F=m n v \\ & F=\text { force required to hold the gun } \\ & n=\text { no.of bullets }\end{aligned}$
  3. Force in non-uniform Circular Motion: $\begin{aligned} & F_c=m a_c=\frac{m v^2}{r} \quad\left(\vec{F}_c \perp \vec{v}\right) \\ & \mathrm{F}_{\mathrm{t}}=\mathrm{ma}_{\mathrm{t}} \\ & F_{\text {net }}=m \sqrt{a_c^2+a_t^2} \\ & \mathrm{~m}=\text { mass } \\ & \mathrm{a}_{\mathrm{c}}=\text { centripetal acceleration } \\ & \mathrm{a}_{\mathrm{t}}=\text { tangential acceleration } \\ & \mathrm{F}_{\mathrm{c}}=\text { centripetal force }\end{aligned}$
B.M Institute of Engineering and Technology B.Tech 2025

24 years of legacy | Scholarships worth 1 CR

Vishwa Vishwani BS Computer Science Admissions 2025

27 Years of Academic Excellence | State of Art Infrastructure

Work Energy and Power

  1. Work $=$ force $\times$ displacement $\times \cos \theta$
  2. Kinetic Energy $=0.5 \times m \times v^2$
  3. Potential Energy $=m \times g \times h$
  4. Law of conservation of Energy $\Delta K+\Delta U=\Delta E=W_{f n c}$
  5. Average power-

    $P_{a v}=\frac{\Delta w}{\Delta t}=\frac{\int_0^t p \cdot d t}{\int_0^t d t}$

  6. Instantaneous power-

    $P=\frac{d w}{d t}=P=\vec{F} \cdot \vec{v}$
    Where, $\vec{F} \rightarrow$ force

    $\vec{v} \rightarrow \text { velocity }$

  7. In Perfectly Inelastic Collision:

    When the colliding bodies are moving in the same direction

    $\begin{aligned}
    & m_1 u_1+m_2 u_2=\left(m_1+m_2\right) v \\
    & v=\frac{m_1 u_1+m_2 u_2}{\left(m_1+m_2\right)}
    \end{aligned}$

    Loss in kinetic energy

    $\begin{aligned}
    & \Delta K \cdot E=\left(\frac{1}{2} m_1 u_1^2+\frac{1}{2} m_2 u_2^2\right)-\left(\frac{1}{2}\left(m_1+m_2\right) V^2\right) \\
    & \Delta K \cdot E=\frac{1}{2}\left(\frac{m_1 m_2}{m_1+m_2}\right)\left(u_1-u_2\right)^2
    \end{aligned}$


    When the colliding bodies are moving in the opposite direction
    $\begin{aligned}
    & m_1 u_1+m_2\left(-u_2\right)=\left(m_1+m_2\right) v \\
    & v=\frac{m_1 u_1-m_2 u_2}{m_1+m_2}
    \end{aligned}$

    Loss in kinetic energy

    $\begin{aligned}
    & \Delta K \cdot E=\left(\frac{1}{2} m_1 u_1^2+\frac{1}{2} m_2 u_2^2\right)-\left(\frac{1}{2}\left(m_1+m_2\right) V^2\right) \\
    & \Delta K \cdot E=\frac{1}{2}\left(\frac{m_1 m_2}{m_1+m_2}\right)\left(u_1+u_2\right)^2
    \end{aligned}$

  8. Center of mass:

    For a system of N discrete particles

    $\begin{aligned}
    x_{c m} & =\frac{m_1 x_1+m_2 x_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots} \\
    y_{c m} & =\frac{m_1 y_1+m_2 y_2+m_3 y_3 \ldots \ldots \ldots}{m_1+m_2+m_3 \ldots \ldots} \\
    z_{c m} & =\frac{m_1 z_1+m_2 z_2+m_3 z_3 \ldots \ldots \ldots}{m_1+m_2+m_3 \ldots \ldots}
    \end{aligned}$

  9. Velocity of the centre of mass

    $\vec{v}_{C M}=\frac{m_1 \vec{v}_1+m_2 \vec{v}_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots \ldots}$

  10. Acceleration of centre of mass

    $\vec{a}_{C M}=\frac{m_1 \vec{a}_1+m_2 \vec{a}_2 \ldots \ldots \ldots}{m_1+m_2 \ldots \ldots .}$

  11. Moment of inertia of a particle

    $I=m r^2$

  12. Radius of gyration (K): $K=\sqrt{\frac{I}{M}}$

Gravitation

  1. Gravitational force $\vec{F}=G\left[\frac{M m}{r^2}\right]^r$
  2. Acceleration due to gravity $g=\frac{G M}{R^2}$
  3. Gravitational field Intensity:

    $\vec{I}=\frac{\vec{F}}{m}$

    $\vec{I} \rightarrow G$. field Intensity
    $m \rightarrow$ mass of object
    $\vec{f} \rightarrow$ Gravitational Force

  4. Gravitational Potential: $\begin{aligned} & V=-\int \vec{I} \cdot \overrightarrow{d r} \\ & V \rightarrow \text { Gravitational potential } \\ & I \rightarrow \text { Field Intensity } \\ & d r \rightarrow \text { small distance }\end{aligned}$

Mechanical Properties of Solids

  1. The magnitude of stress, $\sigma=\frac{F}{A}$
    Unit of stress: $N / m^2$ or Pascal(Pa)
    Dimension of stress: $\left[M L^{-1} T^{-2}\right]$
  2. Volume stress $=\frac{F}{A}=P$
  3. Longitudinal strain $=\frac{\Delta L}{L}$
  4. Hooke’s law:" $\begin{gathered}\text { Stress } \alpha \text { Strain } \\ \Rightarrow \text { Stress }=E(\text { Strain }) \\ \Rightarrow E=\frac{\text { Stress }}{\text { Strain }}\end{gathered}$
  5. Young's Modulus(Y): $Y=\frac{\text { longitudinal stress }}{\text { longitudinal strain }}=\frac{F / A}{\Delta L / L}=\frac{F l}{A \Delta L}$
  6. Modulus of rigidity(G): $G=\frac{\text { shearing stress }}{\text { shearing strain }}=\frac{F / A}{x / L}=\frac{F l}{A x}=\frac{F}{A \phi}$
  7. Bulk Modulus(B):

    $\begin{gathered}
    \text { Volumestress }=\frac{F}{A}=\text { Pressure } \\
    \qquad B=-\frac{P}{\Delta V / V}
    \end{gathered}$

    where $\mathrm{P}=$ increase in pressure, $\mathrm{V}=$ original volume, $\Delta V=$ change in volume

Mechanical Properties of Fluids

  1. Pressure $P=\frac{F}{A}$
  2. Buoyant force $F_B=\rho V g$

    Where $\mathrm{F}_{\mathrm{B}}=$ Buoyant force

    $\rho=\text { density of the fluid }$
    V= Volume of the solid body immersed in the liquid or Volume of the fluid displaced

  3. Relative density of a body

    $R . D=\frac{\text { density of body }}{\text { density of water }}$

  4. Bernoulli's equation $P+\rho g h+\frac{1}{2} \rho v^2=\text { constant }$

    $P \rightarrow$ Pressure energy per unit volume $\rho g h \rightarrow$ Potential Energy per unit volume $\frac{1}{2} \rho v^2 \rightarrow$ Kinetic Energy per unit volume

  5. Velocity gradient $=\frac{\text { chane in velocity }}{\text { change in height }}$

Kinetic theory of Gases

  1. Boyle's law $V \propto \frac{1}{P}$
  2. Charle's law $V \propto T$
  3. GRAHAM’S LAW OF DIFFUSION

    $r \propto \frac{1}{\sqrt{\rho}} \propto \frac{1}{\sqrt{M}} \propto V_{r m s}$
    Where, $r=$ rate of diffusion of gas
    $\rho=$ Density of the gas
    M = Molecular weight of the gas
    $V_{r m s}=$ Root mean square velocity

  4. Ideal gas equation $P V=n R T$

  5. Degree of freedom

    $f=3 N-R$
    Where
    $N=$ no. of particle
    $R=$ no. of relation

Thermodynamics

  1. $\Delta W=P \Delta V=P\left(V_f-V_i\right)$
  2. Heat transfer -

    $\begin{aligned}
    & \Delta Q=m L_{\text {(for change of state) }} \\
    & \Delta Q=m s \Delta T \text { (for change in temperature) }
    \end{aligned}$

  3. First law of thermodynamics $\Delta Q=\Delta U+\Delta W$

  4. Efficiency of Heat Engine $\eta=\frac{\text { Work done }}{\text { Heat input }}=\frac{W}{Q_1}$

  5. Entropy $d S=\frac{\text { Heat absorbed by system }}{\text { Absolute temperature }}$ or $d S=\frac{d Q}{T}$

Oscillations

  1. General equation of SHM

    1. For Displacement:-
    $x=A \operatorname{Sin}(w t+\phi) ;$ where $\phi$ is initial phase or epoch and $(\omega t+\phi)$ is called as phase.
    Various displacement equations:-
    (1) $x=A$ Sin $\omega t \Rightarrow$ when particle starts from mean position towards right.
    (2) $x=-$ ASinwt $\Rightarrow$ when particle starts from mean position towards left.
    (3) $x=A C o s w t \Rightarrow$ when particle starts from right extreme position towards left
    (4) $x=-$ ACoswt $\Rightarrow$ when particle starts from left extreme position towards Right.
    2. For Velocity (v):-

    $$
    \begin{aligned}
    x & =A \operatorname{Sin}(\omega t+\phi) \\
    \Rightarrow v & =\frac{d x}{d t}=A \omega \operatorname{Cos}(\omega t+\phi)=A \omega \operatorname{Sin}\left(\omega t+\phi+\frac{\pi}{2}\right)
    \end{aligned}
    $$

    3. For Acceleration:-

    $$
    \begin{aligned}
    x & =A \operatorname{Sin}(\omega t+\phi) \\
    \Rightarrow v & =\frac{d x}{d t}=A \omega \operatorname{Cos}(\omega t+\phi)=A \omega \operatorname{Sin}\left(\omega t+\phi+\frac{\pi}{2}\right) \\
    \Rightarrow a & =\frac{d v}{d t}=-A \omega^2 \operatorname{Sin}(\omega t+\phi)=A \omega^2 \operatorname{Sin}(\omega t+\phi+\pi)=-\omega^2 x
    \end{aligned}
    $$

  2. Differential equation of SHM $\begin{aligned} & \frac{d v}{d t}=-\omega^2 x \\ & \Rightarrow \frac{d}{d t}\left(\frac{d x}{d t}\right)=-\omega^2 x \\ & \Rightarrow \frac{d^2 x}{d t^2}+\omega^2 x=0\end{aligned}$

  3. Kinetic Energy $K=\frac{1}{2} m v^2$

  4. Spring Force $F=-k x$

Electric Charges and Fields

  1. Coulomb's Law $F=\frac{K Q_1 Q_2}{r^2}$
  2. Electric Field Intensity $E=\frac{F}{q_0}$
  3. Linear charge distribution $\lambda=\frac{q}{L}=\frac{C}{m}=C m^{-1}$
  4. Surface charge distribution $\sigma=\frac{Q}{A}=\frac{C}{m^2}=C m^{-2}$
  5. Volume Charge distribution $\rho=\frac{Q}{V}=\frac{C}{m^3}=C m^{-3}$
  6. Electric Dipole $(\vec{P})=q(2 \vec{l})$
  7. Torque on dipole $\tau=Q E d \sin \theta$
  8. Electric flux $\phi=\int \vec{E} \cdot \vec{d} A$
  9. Gauss's law $\phi=\oint E \cdot d A$

Electrostatic Potential and Capacitance

  1. Electric Potential $V=\frac{W_{e x t}}{q_0}$
  2. Electrostatic Potential energy (U) $U=\frac{K Q q}{r}$
  3. Capacitance $C=\frac{Q}{V}$
  4. Series combination $C=\frac{c_1 c_2}{c_1+c_2}$
  5. Parallel combination $\mathbf{C}=c_1+c_2+c_3$
  6. Energy stored in capacitor $U=\frac{1}{2} \frac{Q^2}{C}=\frac{1}{2} Q V=\frac{1}{2} C V^2$

Current Electricity

  1. $I=\frac{Q}{t}$
  2. Current Density $\bar{j}=\frac{\Delta i}{\Delta A}$
  3. Drift Velocity $v_d=\frac{-e \vec{E}}{m} \tau$
  4. Ohm’s law $V=I R$
  5. Mobility $\mu=\frac{v_d}{E}$
  6. Resistance $R=\rho \frac{l}{A}$
  7. Specific Resistance $(\rho)$ $\rho=\frac{m}{n e^2 \tau}$
  8. Series grouping of Resistance $R_{e q}=R_1+R_2+R_3+\cdots+R_n$
  9. Parallel Grouping Of Resistance $\frac{1}{R_{e q}}=\frac{1}{R_1}+\frac{1}{R_2}+\cdots+\frac{1}{R_n}$
  10. Kirchoff's first law $i_1+i_3=i_2+i_4$
  11. Kirchoff's second law $-i_1 R_1+i_2 R_2-E_1-i_3 R_3+E_2+E_3-i_4 R_4=0$

Moving Charges and Magnetism

  1. Biot-Savart Law $d B=K \frac{I d l \sin \theta}{r^2}$
  2. Ampere's Circuital Law $\oint \vec{B} d \vec{l}=\mu_0 \sum i$
  3. Magnetic Feild of Toroid $\mathrm{B}=\frac{\mu_0 \mathrm{NI}}{2 \pi r}$
  4. Lorentz Force $\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]$
  5. Current sensitivity (Si) $S_i=\frac{\alpha}{i}=\frac{N B A}{C}$
  6. Voltage sensitivity (SV) $S_V=\frac{\alpha}{V}=\frac{\alpha}{i R}=\frac{S_i}{R}=\frac{N B A}{R C}$

Magnetism and Matter

  1. Magnetic flux $\phi_B=\int \vec{B} \cdot d \vec{S}$
  2. Magnetic Intensity $H=\frac{B_0}{\mu_0}$

Electromagnetic Induction

  1. Faraday's Law: Rate of change of magnetic Flux= $\varepsilon=\frac{-d \phi}{d t}$ where $d \phi \rightarrow \phi_2-\phi_{1=}$ change in flux
  2. Induced Current $I=\frac{\varepsilon}{R}=\frac{-N}{R} \frac{d \phi}{d t}$
  3. Induced Charge $d q=i . d t=\frac{-N}{R} \frac{d \phi}{d t} . d t$
  4. Induced Power $P=\frac{\varepsilon^2}{R}=\frac{N^2}{R}\left(\frac{d \phi}{d t}\right)^2$
  5. Induced Electric Field $\varepsilon=\oint \vec{E}_{i n} \cdot \overrightarrow{d l}=\frac{-d \phi}{d t}$
  6. Energy Stored In An Inductor $U=\frac{1}{2} L I^2$

Electromagnetic Waves

  1. Maxwell's equations 1. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=\mathrm{Q} / \varepsilon_0$
    (Gauss's Law for electricity)
    2. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{A}=0$
    (Gauss's Law for magnetism)
    3. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{l}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{d} t}$
    (Faraday's Law)
    4. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu_0 i_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{~d} \phi_E}{\mathrm{~d} t}$
    (Ampere-Maxwell Law)
  2. Intensity (I) $I=\frac{\text { Total EM energy }}{\text { Surface area } \times \text { Time }}=\frac{\text { Total energy density } \times \text { Volume }}{\text { Surface area } \times \text { Time }}$
  3. Wavelength of EM Wave

    $\lambda=\frac{\lambda_o}{\mu}$

    $\lambda_o=$ Wavelength in vacuum
    $\mu$ = Refractive index of medium

Ray Optics and Optical Instruments

  1. Mirror formula $f=\frac{1}{u}+\frac{1}{v}$
  2. lateral magnification $m_v=\frac{\text { height of image }}{\text { height of object }}=\frac{h_i}{h_0}$
  3. Refractive index $\mu=\frac{c}{v}$
  4. Magnifying power $m=\frac{\text { Visual angle with instrument }(\beta)}{\text { Visual angle when object is placed at least distance of distinct vision }(\alpha)}$

Dual Nature of Matter and Radiation

  1. Work function $\phi=h \nu_o=\frac{h c}{\lambda_o}$
  2. $E=h \nu=\frac{h c}{\lambda}$
  3. Momentum of the photon $p=m \times c=\frac{E}{c}=\frac{h \nu}{c}=\frac{h}{\lambda}$
  4. Einstein's Photoelectric Equation K.E. $=h v-\Phi$
  5. Photon Flux $\phi=\frac{\text { Intensity }}{\text { Energy of each photon }}=\frac{I}{E}=\frac{n}{A}$
  6. De Broglie’s Equation $\lambda=\frac{h}{p}$

Also Read: JEE Main 2026 Important Formulas for Physics PDF

JEE Main Formulas for Chemistry 2026

Candidates while studying the chemistry, they need to revise and practice the chemical equations and symbols, to some chemistry is tough subject but when candidates practices chemical equations, revises the properties, formulas and symbols they will have command over the subject Candidates can check the JEE Main Chemistry formulas below

JEE Main Important Formulas of Physical Chemistry

Some Basic Concepts in chemistry

  1. Boyle's Law: $P_1 V_1=P_2 V_2$ (at constant T and n )
  2. Charles's Law: $\frac{V_1}{T_1}=\frac{V_2}{T_2}($ at constant P and n$)$
  3. Avogadro's Law: $\frac{V}{n}=$ constant
  4. Average Atomic Mass $=\frac{\Sigma(\text { Mass of Isotopes })_i \times(\% \text { abundance })_i}{100}$
  5. Mole $=\frac{\mathrm{W}}{\mathrm{M}}=\frac{(\mathrm{Wt} . \text { of substance in gm. })}{(\text { Molar mass of substance }(\mathrm{G} . \mathrm{m} . \mathrm{m}))}$
  6. Mass $\%$ of an element $=\frac{\text { Mass of that element in one mole of the compound }}{\text { Molar mass of the compound }} \times 100$
  7. Equivalent Weight $=\frac{\text { Molecular weight }}{\mathrm{n}-\text { factor }(\mathrm{x})}$

Atomic Structure

  1. Frequency $\nu=\frac{1}{\mathrm{~T}}$
  2. Wave number $(\bar{\nu})$ $\bar{\nu}=\frac{1}{\lambda}$
  3. $E=h \nu=\frac{h c}{\lambda}$
  4. Line Spectrum of Hydrogen-like atoms

    $\frac{1}{\lambda}=R Z^2\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$

  5. Bohr radius of nth orbit:

    $\mathrm{r}_{\mathrm{n}}=0.529 \frac{\mathrm{n}^2}{\mathrm{Z}} \mathrm{~A}^0$

  6. Velocity of electron in nth orbit:

    $\mathrm{V}_{\mathrm{n}}=\left(2.18 \times 10^6\right) \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{~m} / \mathrm{s}$

    where Z is atomic number

  7. Total energy of electron in nth orbit:

    $\mathrm{E}_{\mathrm{n}}=-13.6 \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{eV}=-2.18 \times 10^{-18} \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~J}$

    where Z is the atomic number

  8. Heisenberg Uncertainty Principle: $\Delta x . \Delta P \geq \frac{h}{4 \pi}$

  9. $\mathrm{E}_{\mathrm{n}}=-\frac{1312 \times \mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~kJ} / \mathrm{mol}$

Chemical Thermodynamics

  1. Expansion Work $=\mathrm{P} \times \Delta \mathrm{V}=-\mathrm{P}_{\text {ext. }}\left[\mathrm{V}_2-\mathrm{V}_1\right]$
    $\mathrm{P}=$ external pressure And $\Delta \mathrm{V}=$ increase or decrease in volume.
  2. Work done in a reversible isothermal process

    $\begin{aligned}
    & \mathrm{W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{~V}_2}{\mathrm{~V}_1} \\
    & \mathrm{~W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{P}_1}{\mathrm{P}_2}
    \end{aligned}$

  3. Work done in an irreversible isothermal process
    Work $=-\mathrm{P}_{\text {ext. }}\left(\mathrm{V}_2-\mathrm{V}_1\right)$
    That is, Work $=-\mathrm{P} \times \Delta \mathrm{V}$

  4. $W=\Delta E=n C_V \Delta T$

  5. Enthalpy: $H=U+p V$

  6. First Law of Thermodynamics: $\Delta U=q+W$

  7. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta(\mathrm{S})$

  8. $\Delta G=-n F E$

Equilibrium

  1. For a reaction:

    $\mathrm{mA}+\mathrm{nB} \rightleftharpoons \mathrm{pC}+\mathrm{qD}$ $\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\frac{[\mathrm{C}]^{\mathrm{p}}[\mathrm{D}]^{\mathrm{q}}}{[\mathrm{A}]^{\mathrm{m}}[\mathrm{B}]^{\mathrm{n}}}=\mathrm{K}_{\mathrm{c}}$

  2. $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

  3. $\mathrm{k}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

  4. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\text { Salt }]}{\text { Acid }}$

  5. $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log _{10} \frac{[\text { Salt }]}{[\text { Base }]}$

ELECTROCHEMISTRY

  1. $\mathrm{W}=\frac{\text { Eit }}{96500}$
  2. $\begin{aligned}
    & \frac{E_1}{E_2}=\frac{M_1}{M_2} \text { or } \frac{W_1}{W_2}=\frac{Z_1}{Z_2} \\
    & E_1=\text { equivalent weight } \\
    & E_2=\text { equivalent weight }
    \end{aligned}$
    W or M = mass deposited

  3. $\begin{aligned} & E_{\text {cell }} \text { or } E M F=\left[E_{\text {red }}(\text { cathode })-E_{\text {red }}(\text { anode })\right] \\ & E_{\text {eell }}^{\circ} \text { or } E M F^{\circ} \\ & =\left[E_{\text {red }}^{\circ}(\text { cathode })-E_{\text {red }}^{\circ}(\text { anode })\right]\end{aligned}$

  4. $\mathrm{E}=\mathrm{E}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln Q$

  5. $\mathrm{xA}+\mathrm{yB} \xrightarrow{\mathrm{ne}^{-}} \mathrm{mC}+\mathrm{nD}$
    The emf can be calculated as

    $\text { Ecell }=\mathrm{E}^{\circ} \text { cell }-\frac{0.059}{\mathrm{n}} \log \frac{[\mathrm{C}]^{\mathrm{m}}[\mathrm{D}]^{\mathrm{n}}}{[\mathrm{~A}]^x[\mathrm{~B}]^{\mathrm{y}}}$

  6. $\wedge_{\mathrm{m}}=\kappa \times \frac{1000}{\mathrm{c}}$

  7. $\wedge_{\text {eq }}=\frac{1000 \times \kappa}{\mathrm{N}}$

Solutions

  1. Mass $\%$ of a component $=\frac{\text { Mass of the component in the solution }}{\text { Total mass of the solution }} \times 100$
  2. Volume $\%$ of a component $=\frac{\text { Volume of the component }}{\text { Total volume of solution }} \times 100$
  3. Mass by Volume $\%$ of a component $=\frac{\text { Mass of the component }}{\text { Total volume of solution }} \times 100$
  4. Parts per million $=\frac{\text { Number of parts of the component }}{\text { Total number of parts of all components of the solution }} \times 10^6$
  5. Mole fraction of a component $=\frac{\text { Number of moles of the component }}{\text { Total number of moles of all the components }}$
  6. Molarity: $(M)=\frac{\text { No. of Moles of Solutes }}{\text { Volume of Solution in Liters }}$
  7. Molality: $(m)=\frac{\text { No. of Moles of Solutes }}{\text { Mass of solvent in } \mathrm{kg}}$
  8. $\left(P_T\right)=P_A^o X_A+P_B^o X_B$ ($\begin{aligned} & P_A=P_A^o X_A \\ & P_B=P_B^o X_B \\ & P_T=P_A+P_B\end{aligned}$)
  9. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w}}{\mathrm{M}} \times \frac{1000}{\mathrm{~W}}$
  10. $\Delta T_f=K_f \times \frac{w}{M} \times \frac{1000}{W}$
  11. $\Pi=C R T$
  12. $\begin{aligned} & \mathrm{i}=\frac{\text { Observed number of solute particles }}{\text { Number of particles initially taken }} \\ & \mathrm{i}=\frac{\text { Observed value of colligative property }}{\text { Theoretical value of colligative property }}\end{aligned}$

Chemical kinetics

  1. Unit of average velocity $=\frac{\text { Unit of concentration }}{\text { Unit of time }}=\frac{\text { mole }}{\text { litre second }}=$ mole litre $^{-1}$ second $^{-1}$
  2. $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$
    Rate w.r.t. $[\mathrm{A}]=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}} \times \frac{1}{\mathrm{a}}$
    Rate w.r.t. $[B]=-\frac{d[B]}{d t} \times \frac{1}{b}$
    Rate w.r.t. $[\mathrm{C}]=-\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}} \times \frac{1}{\mathrm{c}}$
    Rate w.r.t. $[\mathrm{D}]=-\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}} \times \frac{1}{\mathrm{~d}}$
  3. $\mathrm{R} \propto[\mathrm{A}]^{\mathrm{p}}[\mathrm{B}]^{\mathrm{q}}$
  4. Unit of Rate Constant-

    $\begin{aligned}
    & \text { The differential rate expression for } \mathrm{n}^{\text {th }} \text { order reaction is as follows: } \\
    & \qquad-\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \\
    & \text { or } \quad \mathrm{k}=\frac{\mathrm{dx}}{(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \mathrm{dt}}=\frac{(\text { concentration })}{(\text { concentration })^{\mathrm{n}} \text { time }}=(\text { conc. })^{1-\mathrm{n}} \text { time }^{-1}
    \end{aligned}$

  5. For the first-order reaction,

    $k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_0}{[\mathrm{R}]}$

  6. $t_{1 / 2}=\frac{0.693}{k}$

  7. For any general nth order reaction, it is evident that,

    $\mathrm{t}_{\frac{1}{2}} \propto[\mathrm{~A}]_0^{1-\mathrm{n}}$
    It is to be noted that the above formula is applicable for any general nth-order reaction except $\mathrm{n}=1$.

  8. Arrhenius Equation: $\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$

  9. $\log \frac{\mathrm{K}_2}{\mathrm{~K}_1}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right]$

JEE Main Important Formulas of Inorganic Chemistry

Coordination Compounds

  1. $\mathrm{EAN}=Z-O+2 L$
    Where:
    $\mathbf{Z}=$ Atomic number of the central metal atom/ion
    $\mathbf{O}=$ Oxidation state of the metal atom/ion
    L = Number of ligands (or donor atoms) $\times$ number of electrons donated per ligand

  2. Crystal Field Stabilization Energy (CFSE):
    Octahedral:

    $\mathrm{CFSE}=(-0.4 x+0.6 y) \Delta_0$

    Tetrahedral:

    $\mathrm{CFSE}=(-0.6 x+0.4 y) \Delta_t$

    where $x=t_2 g$ electrons, $y=$ e_g electrons

d- & f-Block Elements

  1. Magnetic Moment:

    $\mu=\sqrt{n(n+2)} \mathrm{BM}$

Chemical Bonding and Molecular Structure

  1. Formal Charge:

    $\text { F.C. }=V-N-\frac{B}{2}$

    ( $\mathrm{V}=$ valence electrons, $\mathrm{N}=$ non-bonding, $\mathrm{B}=$ bonding electrons)

  2. Bond Order (Molecular Orbital Theory):

    $\text { Bond Order }=\frac{\left(N_b-N_a\right)}{2}$

  3. Dipole Moment:

    $\mu=q \times d$

    ( $q=$ charge,$d=$ distance between charges)

JEE Main Important Formulas: Inorganic Chemistry

Some Basic Principles of Organic Chemistry

  1. Application of Inductive Effect

    The decreasing -I effect or increasing +I effect order is as follows:

    $\begin{aligned}
    & -\mathrm{NH}_3+>-\mathrm{NO}_2>-\mathrm{SO}_2 \mathrm{R}>-\mathrm{CN}>-\mathrm{SO}_3 \mathrm{H}>-\mathrm{CHO}>-\mathrm{CO}>-\mathrm{COOH}>-\mathrm{F}>-\mathrm{COCl}>-\mathrm{CONH}_2>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}>-\mathrm{OR}>-\mathrm{OH}>-\mathrm{NR}_2>-\mathrm{NH}_2> \\
    & -\mathrm{C}_6 \mathrm{H}_5>-\mathrm{CH}=\mathrm{CH}_2>-\mathrm{H}
    \end{aligned}$

  2. Degree of Unsaturation (DU or IHD):

    $\mathrm{DU}=\frac{2 C+2-H+N-X}{2}$

    ( $\mathrm{C}=$ carbon, $\mathrm{H}=$ hydrogen, $\mathrm{N}=$ nitrogen, $\mathrm{X}=$ halogen)

Hydrocarbons

  1. Alkanes: $C_n H_{2 n+2}$
  2. Alkenes: $C_n H_{2 n}$
  3. Alkynes: $C_n H_{2 n-2}$

Carboxylic Acids and Derivatives

Method of Preparation of Carboxylic Acid

Also Read: JEE Main 2026 Chemistry Important Formulas PDF

JEE Main Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

JEE Main formulas for Maths 2026

Candidates must go through all the formulas and practice the mathematical problems. Without formulas you cannot solve any problem though you know how to solve it. Revising the formulas daily is very important. Here we have provided the Mathematics formulas for JEE Mains.

Sets, Relations, and Functions

  1. Properties of union $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A} \quad$ (Commutative Property)
    $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (Associative property)
    $\mathrm{A} \cup \varphi=\mathrm{A}$ (Law of identity element, $\varphi$ is the identity of Null Set)
    $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ (Idempotent law)
    $\mathrm{U} \cup \mathrm{A}=\mathrm{U}($ Law of U$)$
    If A is a subset of B , then $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
  2. Properties of intersection $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ (Commutative law).
    $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$ (Associative law).
    $\mathrm{A} \cap \phi=\phi$,
    $\mathrm{A} \cap \mathrm{U}=\mathrm{A}$ (Law of $\phi$ and U ).
    $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$ (Idempotent law)
    If A is subset of B , then $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$
  3. Properties of Difference of Sets 1. In general A - B does not equal B - A
    2. $\mathrm{A}-\mathrm{A}=\phi$
    3. $\mathrm{A}-\phi=\mathrm{A}$
    4. $\mathrm{A}-\mathrm{U}=\phi$
    5. If A is a subset of B , then $\mathrm{A}-\mathrm{B}=\phi$
  4. Symmetric Difference of Sets ( A Δ B ) $A \Delta B=(A-B) \cup(B-A)$
  5. Properties of Compliment $\begin{aligned} & A \cup A^{\prime}=U \\ & A \cap A^{\prime}=\varphi \\ & \left(A^{\prime}\right)^{\prime}=A \\ & U^{\prime}=\varphi \text { and } \varphi^{\prime}=U \\ & A-B=A \cap B^{\prime}\end{aligned}$

Complex Numbers and Quadratic Equations

  1. Equality of Complex Numbers $a+i b=c+i d$
  2. Addition of Two Complex Numbers $z_1+z_2=(a+i b)+(c+i d)=(a+c)+i(b+d)$
  3. Difference of Two Complex Numbers $z_1-z_2=(a+i b)-(c+i d)=(a-c)+i(b-d)$
  4. Multiplication of Two Complex Numbers $z_1 \times z_2=(a+i b)(c+i d)$
  5. Division of Two Complex Numbers $\frac{z_1}{z_2}=\frac{a+i b}{c+i d} \cdot \frac{c-i d}{c-i d}$
  6. Modulus $|z|=\sqrt{x^2+y^2}$

Matrices and Determinants

  1. Addition of matrices $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$ for all $i, j$
  2. Subtraction of matrices $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}$ for all $i, j$
  3. Multiplication of Determinant $\Delta_1=\left|\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|$ and $\Delta_2=\left|\begin{array}{ccc}\alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3\end{array}\right|$ then $\Delta_1 \times \Delta_2=\left|\begin{array}{lll}a_1 \alpha_1+b_1 \beta_1+c_1 \gamma_1 & a_1 \alpha_2+b_1 \beta_2+c_1 \gamma_2 & a_1 \alpha_3+b_1 \beta_3+c_1 \gamma_3 \\ a_2 \alpha_1+b_2 \beta_1+c_2 \gamma_1 & a_2 \alpha_2+b_2 \beta_2+c_2 \gamma_2 & a_2 \alpha_3+b_2 \beta_3+c_2 \gamma_3 \\ a_3 \alpha_1+b_3 \beta_1+c_3 \gamma_1 & a_3 \alpha_2+b_3 \beta_2+c_3 \gamma_2 & a_3 \alpha_3+b_3 \beta_3+c_3 \gamma_3\end{array}\right|$

Sequence and Series

  1. Series $\mathrm{S}_{\mathrm{n}}=a_1+a_2+a_3+\ldots \ldots \ldots .+a_n=\sum_{\mathrm{r}=1}^{\mathrm{n}} a_r=\sum a_r$
  2. General Term of an AP $\begin{aligned} & a_1=a+(1-1) d=a \\ & a_2=a+(2-1) d=a+d \\ & a_3=a+(3-1) d=a+2 d \\ & a_4=a+(4-1) d=a+3 d\end{aligned}$
  3. Arithmetic Mean $A=\frac{a_1+a_2+a_3+\ldots . .+a_n}{n}$.
  4. .General Term of a GP $\begin{aligned} & a_1=a=a r^{1-1} \quad\left(1^{\text {st }} \text { term }\right) \\ & a_2=a r=a r^{2-1} \quad\left(2^{\text {nd }} \text { term }\right) \\ & a_3=a r^2=a r^{3-1} \quad\left(3^{\text {rd }} \text { term }\right)\end{aligned}$
  5. Geometric Mean $G=\sqrt[n]{a_1 \cdot a_2 \cdot a_3 \cdot \ldots . . \cdot a_n}$
  6. Sum of n-term of a GP $S_n=a\left(\frac{r^n-1}{r-1}\right)$
  7. .Sum of an infinite GP $\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}$
  8. Harmonic Mean
  9. $H=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\ldots .+\frac{1}{a_n}}$

Trigonometry

  1. Trigonometric Functions of Acute Angles $\begin{aligned} & \text { Sine } \quad \sin t=\frac{\text { opposite }}{\text { hypotenuse }} \\ & \text { Cosine } \quad \cos t=\frac{\text { adjacent }}{\text { hypotenuse }} \\ & \text { Tangent } \quad \tan t=\frac{\text { opposite }}{\text { adjacent }}\end{aligned}$
  2. Trigonometric Identities $\begin{aligned} & \sin ^2 t+\cos ^2 t=1 \\ & 1+\tan ^2 t=\sec ^2 t \\ & 1+\cot ^2 t=\csc ^2 t \\ & \tan t=\frac{\sin t}{\cos t}, \quad \cot t=\frac{\cos t}{\sin t}\end{aligned}$
  3. Trigonometric Ratio for Compound Angles $\begin{aligned} & \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\ & \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\ & \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\ & \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta\end{aligned}$$\begin{aligned} \tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\ \tan (\alpha-\beta) & =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\ \cot (\alpha+\beta) & =\frac{\cot \alpha \cot \beta-1}{\cot \alpha+\cot \beta} \\ \cot (\alpha-\beta) & =\frac{\cot \alpha \cot \beta+1}{\cot \beta-\cot \alpha}\end{aligned}$
  4. Product into Sum/Difference 1. $2 \cos \alpha \cos \beta=[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
    2. $2 \sin \alpha \sin \beta=[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
    3. $2 \sin \alpha \cos \beta=[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
    4. $2 \cos \alpha \sin \beta=[\sin (\alpha+\beta)-\sin (\alpha-\beta)]$
  5. Sum/Difference into Product 1. $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
    2. $\sin \alpha-\sin \beta=2 \sin \left(\frac{\alpha-\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)$
    3. $\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
    4. $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
  6. Reduction Formula $\begin{aligned} \sin ^2 \theta & =\frac{1-\cos (2 \theta)}{2} \\ \cos ^2 \theta & =\frac{1+\cos (2 \theta)}{2} \\ \tan ^2 \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}\end{aligned}$
  7. Triple Angle Formula 1. $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^3 \mathrm{~A}$
    2. $\cos 3 \mathrm{~A}=4 \cos ^3 \mathrm{~A}-3 \cos A$
    3. $\tan 3 \mathrm{~A}=\frac{3 \tan \mathrm{~A}-\tan ^3 \mathrm{~A}}{1-3 \tan ^2 \mathrm{~A}}$
  8. Half Angle Formula 1. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
    2. $\quad \cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
    3. $\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$

Co-ordinate Geometry

  1. Internal division $\mathbf{x}=\frac{\mathbf{m x}_2+\mathbf{n} \mathbf{x}_1}{\mathbf{m}+\mathbf{n}}, \mathbf{y}=\frac{\mathbf{m y}_2+\mathbf{n y}_1}{\mathbf{m}+\mathbf{n}}$
  2. External Division $\mathbf{x}=\frac{\mathbf{m x}_2-\mathbf{n x}_1}{\mathbf{m}-\mathbf{n}}, \quad \mathbf{y}=\frac{\mathbf{m y}_2-\mathbf{n y}_1}{\mathbf{m}-\mathbf{n}}$
  3. Parametric Form for $(x-h)^2+(y-k)^2=\mathbf{r}^2$

Limit, Continuity And Differentiability

  1. Sum law for limits : $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M$
  2. Difference law for limits : $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M$
  3. Constant multiple law for limits : $\lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L$
  4. Product law for limits : $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$
  5. Quotient law for limits : $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}$ for $M \neq 0$
  6. Binomial Expansion for any index

    $(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3 \ldots$

    where, $|x|<1$

  7. DIFFERENTIATION $\frac{d}{d x}($ constant $)=0$ $\frac{d}{d x}\left(\mathbf{x}^{\mathbf{n}}\right)=\mathbf{n} \mathbf{x}^{\mathbf{n}-\mathbf{1}}$ $\frac{d}{d x}\left(\mathbf{a}^{\mathbf{x}}\right)=\mathbf{a}^{\mathbf{x}} \log _{\mathrm{e}} \mathbf{a}$

    $\frac{d}{d x}\left(\mathbf{e}^{\mathbf{x}}\right)=\mathbf{e}^{\mathbf{x}} \log _{\mathbf{e}} \mathbf{e}=\mathbf{e}^{\mathbf{x}}$

    $\frac{d}{d x}\left(\log _{\mathbf{a}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x} \log _{\mathbf{e}} \mathbf{a}}, \quad \mathbf{x} \neq \mathbf{0}$
    $\frac{d}{d x}\left(\log _{\mathrm{e}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x}}, \quad \mathbf{x} \neq \mathbf{0}$

  8. Sum Rule $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$

  9. Difference Rule $\frac{d}{d x}(f(x)-g(x))=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))$

  10. Constant Multiple Rule $\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))$

  11. Product Rule $\frac{d}{d x}(f(x) g(x))=g(x) \cdot \frac{d}{d x}(f(x))+f(x) \cdot \frac{d}{d x}(g(x))$

Integral Calculus

  1. Rules of integration (a) $\int \mathrm{kf}(x) d x=k \int f(x) d x$ for any constant $k$.
    (b) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
    (c) $\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$
  2. Trigonometric Functions 1. $\frac{d}{d x}(-\cos x)=\sin x \Rightarrow \int \sin x d x=-\cos x+C$
    2. $\frac{d}{d x}(\sin x)=\cos x \Rightarrow \int \cos x d x=\sin x+C$
    3. $\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})=\sec ^2 \mathrm{x} \Rightarrow \int \sec ^2 \mathrm{x} \mathrm{dx}=\tan \mathrm{x}+\mathrm{C}$
    4. $\frac{\mathrm{d}}{\mathrm{dx}}(-\cot \mathrm{x})=\csc ^2 \mathrm{x} \Rightarrow \int \csc ^2 \mathrm{x} \mathrm{dx}=-\cot \mathrm{x}+\mathrm{C}$
    5. $\frac{d}{d x}(\sec x)=\sec x \tan x \Rightarrow \int \sec x \tan x d x=\sec x+C$
    6. $\frac{\mathrm{d}}{\mathrm{dx}}(-\csc \mathrm{x})=\csc \mathrm{x} \cot \mathrm{x} \Rightarrow \int \csc \mathrm{x} \cot \mathrm{x} \mathrm{dx}=-\csc \mathrm{x}+\mathrm{C}$

Differential Equations

  1. (i) $\frac{d y}{d x}=\sin 2 x+\cos x$
    (ii) $\mathrm{k} \frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2}=\left[1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^2\right]^{3 / 2}$

Vector Algebra

  1. Unit Vector $\hat{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}$
  2. Properties of vector Subtraction 1. $\vec{a}-\vec{b} \neq \vec{b}-\vec{a}$
    2. $(\vec{a}-\vec{b})-\vec{c} \neq \vec{a}-(\vec{b}-\vec{c})$
    3. For any two vectors $\vec{a}$ and $\vec{b}$
    (a) $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
    (b) $|\vec{a}+\vec{b}| \geq||\vec{a}|-|\vec{b}||$
    (c) $|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
    (d) $|\vec{a}-\vec{b}| \geq||\vec{a}|-|\vec{b}||$
  3. Linear Combinations of Vectors $\vec{r}=\lambda_1 \vec{a}_1+\lambda_2 \vec{a}_2+\lambda_3 \vec{a}_3+\ldots \ldots+\lambda_n \vec{a}_n$
  4. Properties of Dot (Scalar) Product 1. $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} \quad$ ( commutative )
    2. $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \quad$ (distributive)
    3. $\quad(m \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}=m(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{a}} \cdot(m \overrightarrow{\mathbf{b}})$; where $m$ is a scalar and $\vec{a}, \vec{b}$ are any two vectors
    4. $\quad(l \overrightarrow{\mathbf{a}}) \cdot(m \overrightarrow{\mathbf{b}})=\operatorname{lm}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$; where $l$ and $m$ are scalars
  5. Angle between two vectors $\begin{aligned} & & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & =|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta \\ \Rightarrow & & \cos \theta & =\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|} \\ \Rightarrow & & \theta & =\cos ^{-1}\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}\right)\end{aligned}$
  6. Vector Projection Formula Projection of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{b}}$ Projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\overrightarrow{\mathbf{b}} \cdot \hat{\mathbf{a}}$
  7. Cross Product of Two Vectors If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$, then their cross product given by

    $\vec{a} \times \vec{b}=\left|\begin{array}{lll}
    \hat{i} & \hat{j} & \hat{k} \\
    a_1 & a_2 & a_3 \\
    b_1 & b_2 & b_3
    \end{array}\right|$

Statistics and Probability

  1. Mean $\bar{x}=\frac{x_1+x_2+\cdots+x_n}{n}$
  2. Mean of the Ungrouped Data $\bar{x}=\frac{x_1+x_2+x_3+\ldots \cdots+x_n}{n}=\frac{1}{n} \sum_{i=1}^n x_i$
  3. Mean of Ungrouped Frequency Distribution $\bar{x}=\frac{f_1 x_1+f_2 x_2+f_3 x_3+\ldots \ldots+f_n x_n}{f_1+f_2+f_3+\ldots \ldots+f_n}=\frac{\sum_{i=1}^n f_i x_i}{\sum_{i=1}^n f_i}$
  4. Median of Ungrouped Data If $n$ is odd :

    $\text { Median }=\left(\frac{n+1}{2}\right)^{t h} \text { observation }$
    If $\mathbf{n}$ is even :

    $\text { Median }=\frac{\text { Value of }\left(\frac{n}{2}\right)^{t h} \text { observation }+ \text { Value of }\left(\frac{n}{2}+1\right)^{t h} \text { observation }}{?}$

  5. Median of Continuous Frequency Distribution: Median $=l+\frac{\left(\frac{N}{2}-c f\right)}{f} \times h$ where,
    l = lower limit of median class,
    N = number of observations,
    cf $=$ cumulative frequency of class preceding the median class,
    $\mathrm{f}=$ frequency of median class,
    $\mathrm{h}=$ class size (width) (assuming class size to be equal).

  6. Mode $=l+\left(\frac{f_1-f_0}{2 f_1-f_0-f_2}\right) \times h$
    where
    $\mathrm{l}=$ lower limit of the modal class,
    $\mathrm{h}=$ size of the class interval (assuming all class sizes to be equal),
    $\mathrm{f}_1=$ frequency of the modal class,
    $\mathrm{f}_0=$ frequency of the class preceding the modal class,
    $f_2=$ frequency of the class succeeding the modal class.

  7. Standard Deviation $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^n\left(x_i-\bar{x}\right)^2}$

Also Read: JEE Main 2026 Important Formulas for Maths PDF

Also refer to JEE Main- Top 30 Most Repeated Questions & Topics

Tips to Learn the Formula for JEE Main 2026

Students often find it challenging to learn formulas for the JEE Main, but with the right approach, they can effectively remember them. Given below are some points to remember:

1. Students must try to understand why a formula works. For example, derivations in Physics or Maths often follow a logical pattern.

2. Then break down formulas into chapters or topics.

3. To learn these formulas easily, try to make a formula notebook.

4. Sometimes students must try to make Mnemonics and short tricks, as it helps in quick revision.

5. Try to solve as many questions and revise

6. Try to use diagrams and flowcharts.

Frequently Asked Questions (FAQs)

Q: How do I remember all the formulas for JEE Main?
A:

Revision is the best way to remember all the formulas. Practice more questions based on formulas and revise the formulas on a daily basis.

Q: Can I derive the formula during the exam?
A:

Yes, you can derive the formula during the exam but it is very time-consuming so candidates must learn all the formulas to save time during the exam.

Q: What is the general formula for alkanes, alkenes, and alkynes respectively?
A:

General  formula for alkanes is CnH2n+2 , alkenes is CnH2n and  for alkynes is C

nH2n-2 respectively.

Q: What is the formula of molecular mass in terms of vapor density?
A:

The formula of molecular mass in terms of vapor density is 

Molecular mass = 2 * vapor density 

Articles
|
Certifications By Top Providers
Basic Programming using Python
Via Indian Institute of Technology Bombay
Introduction to Aerospace Engineering
Via Indian Institute of Technology Bombay
Fundamental Concepts of Electricity
Via Indian Institute of Technology Bombay
Artificial Intelligence
Via Columbia University, New York
Computer Fundamentals
Via Devi Ahilya Vishwavidyalaya, Indore
B.Sc in Programming and Data Science
Via Indian Institute of Technology Madras
Udemy
 1525 courses
Swayam
 817 courses
NPTEL
 773 courses
Coursera
 697 courses
Edx
 608 courses
Explore Top Universities Across Globe

Questions related to JEE Main

On Question asked by student community

Have a question related to JEE Main ?

Hello dear candidate,

Could you please specify about which exam you are talking about and which college for example :- VITEEE for VIT or SRMJEE for SRM for us to tell you about what rank you should aim to get a CSE seat there.

I hope you find this helpful.

Thank you.

Hello,

As you asked for JEE mains Hindi-medium question paper I've attached a link below from this you can download your resources.

https://engineering.careers360.com/hi/articles/jee-main-question-paper

Thank you

Hello aspirant,

Make a combined study plan that allots time for all subjects, with an emphasis on the overlapping themes of chemistry and physics, to get ready for both JEE Main and NEET.  To comprehend the various patterns of the two exams and enhance time management, master the NCERT textbooks first, then apply the same method of completing last year's papers and taking practice exams.

Thank you

Hello aspirant,

Students must comprehend the JEE Mains syllabus and be aware of the subjects that will be covered in the test before they can start preparing for it.  Obtaining the appropriate materials, practice exams, and past year's question papers is also essential.  Students can easily pass JEE Mains if they have the proper mindset and all of these resources at their disposal.

For more information, you can visit our site through following link:

https://engineering.careers360.com/articles/how-prepare-for-jee-main

Thank you

Hello aspirant,

The first step in preparing for JEE 2027 is to familiarize yourself with the physics, chemistry, and math syllabus and exam format.  Using NCERT and common reference materials, concentrate on solidifying your Class 11 topics.  Practice frequently and complete 20–30 multiple-choice questions per day.  Finish the Class 12 curriculum by 2025, then start taking chapter-by-chapter and practice exams.  Starting in 2026, make extensive revisions, work through papers from prior years, and concentrate on strengthening your weak points.  Take full-length mocks within the last six months and evaluate your performance.  For optimum outcomes, balance school, coaching, and self-study, be consistent, and revise every day.

Thank you