JEE Main Chemistry Formulas 2026 - Topic wise Important Formulas

JEE Main Chemistry Formulas 2026 - Topic wise Important Formulas

Shivani PooniaUpdated on 04 Nov 2025, 09:48 AM IST

JEE Main Chemistry Formulas 2026 - The Joint Entrance Exam is one of the most competitive exam of engineering entrance exams. It is divided into three subsections (Physics, Chemistry, Maths). Chemistry is an important subject for JEE Main preparation. Hence, having a list of important formulas for JEE Main Chemistry 2025 is necessary. Every aspirant should have the short notes for JEE Mains that comprise the important formulas. These JEE important formulas for Chemistry help in solving the typical problems easily. The registration process for JEE Main 2026 is now open, and students can apply from 31 October 2025 to 27 November 2025. Session 1 of the exam will be conducted from 21 to 30 January 2026.

LiveJEE Main 2026 Registration LIVE: Session 1 application to clos on November 27; form correction from December 1Nov 24, 2025 | 7:08 AM IST

NTA has reiterated that it will not revise the JEE Main 2026 exam date or shift in case of a clash with any other entrance or school-level examination. The agency said the slot allotment is fully computer-based and randomised. Candidates have been asked to prepare according to the schedule published in the information bulletin.

Read More

This Story also Contains

  1. JEE Main 2026 Chemistry Formula Overview
  2. JEE Main Chemistry Important Formulas
  3. Preparation tips for JEE Mains
  4. How to Memorize Chemistry Formulas Effectively
JEE Main Chemistry Formulas 2026 - Topic wise Important Formulas
JEE Main Chemistry Formulas 2026

Download the JEE Main Chemistry Formulas E-Book below:
JEE Mains Chemistry all Formulas PDF Download

JEE Main 2026 Chemistry Formula Overview

There will be a total of 25 questions from Chemistry in JEE Main 2026, all of which have to be attempted. It is further segregated into Physical, Organic, and Inorganic sections. The maximum number of topics has been reduced from this section (chemistry) only. This makes Chemistry easier than before. However, the high-weightage topics for JEE Main remain the same.

Below are important formulas for JEE Main 2026 Chemistry that are helpful for both sessions. Candidates should solve as many Chemistry questions as they can and implement these formulas to remember them quickly. To crack the JEE Main exam with good marks, paste these formulas near the study table and memorise them.

Amrita University B.Tech 2026

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

JEE Main Chemistry Important Formulas

Candidates while studying chemistry, they need to revise and practice the chemical equations and symbols. To some, chemistry is a tough subject, but when candidates practice chemical equations, revise the properties, formulas and symbols, they will have command over the subject. Candidates can check the JEE Main Chemistry formulas below

JEE Main Important Formulas of Physical Chemistry

Some Basic Concepts in chemistry

  1. Boyle's Law: $P_1 V_1=P_2 V_2$ (at constant T and n )
  2. Charles's Law: $\frac{V_1}{T_1}=\frac{V_2}{T_2}($ at constant P and n$)$
  3. Avogadro's Law: $\frac{V}{n}=$ constant
  4. Average Atomic Mass $=\frac{\Sigma(\text { Mass of Isotopes })_i \times(\% \text { abundance })_i}{100}$
  5. Mole $=\frac{\mathrm{W}}{\mathrm{M}}=\frac{(\mathrm{Wt} . \text { of substance in gm. })}{(\text { Molar mass of substance }(\mathrm{G} . \mathrm{m} . \mathrm{m}))}$
  6. Mass $\%$ of an element $=\frac{\text { Mass of that element in one mole of the compound }}{\text { Molar mass of the compound }} \times 100$
  7. Equivalent Weight $=\frac{\text { Molecular weight }}{\mathrm{n}-\text { factor }(\mathrm{x})}$
JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

Atomic Structure

  1. Frequency $\nu=\frac{1}{\mathrm{~T}}$
  2. Wave number $(\bar{\nu})$ $\bar{\nu}=\frac{1}{\lambda}$
  3. $E=h \nu=\frac{h c}{\lambda}$
  4. Line Spectrum of Hydrogen-like atoms

    $\frac{1}{\lambda}=R Z^2\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$

  5. Bohr radius of nth orbit:

    $\mathrm{r}_{\mathrm{n}}=0.529 \frac{\mathrm{n}^2}{\mathrm{Z}} \mathrm{~A}^0$

  6. Velocity of electron in nth orbit:

    $\mathrm{V}_{\mathrm{n}}=\left(2.18 \times 10^6\right) \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{~m} / \mathrm{s}$

    where Z is atomic number

  7. Total energy of electron in nth orbit:

    $\mathrm{E}_{\mathrm{n}}=-13.6 \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{eV}=-2.18 \times 10^{-18} \frac{\mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~J}$

    where Z is atomic number

  8. Hisenberg Uncertainity Principle: $\Delta x . \Delta P \geq \frac{h}{4 \pi}$

  9. $\mathrm{E}_{\mathrm{n}}=-\frac{1312 \times \mathrm{Z}^2}{\mathrm{n}^2} \mathrm{~kJ} / \mathrm{mol}$

Jain University B.Tech Admissions 2026

100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted

Amity University Noida B.Tech Admissions 2026

Among Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities

Chemical Thermodynamics

  1. Expansion Work $=\mathrm{P} \times \Delta \mathrm{V}=-\mathrm{P}_{\text {ext. }}\left[\mathrm{V}_2-\mathrm{V}_1\right]$
    $\mathrm{P}=$ external pressure And $\Delta \mathrm{V}=$ increase or decrease in volume.
  2. Work done in a reversible isothermal process

    $$
    \begin{aligned}
    & \mathrm{W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{~V}_2}{\mathrm{~V}_1} \\
    & \mathrm{~W}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{P}_1}{\mathrm{P}_2}
    \end{aligned}
    $$

  3. Work done in an irreversible isothermal process
    Work $=-\mathrm{P}_{\text {ext. }}\left(\mathrm{V}_2-\mathrm{V}_1\right)$
    That is, Work $=-\mathrm{P} \times \Delta \mathrm{V}$

  4. $W=\Delta E=n C_V \Delta T$

  5. Enthalpy: $H=U+p V$

  6. First Law of Thermodynamics: $\Delta U=q+W$

  7. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta(\mathrm{S})$

  8. $\Delta G=-n F E$

Equilibrium

  1. For a reaction:

    $\mathrm{mA}+\mathrm{nB} \rightleftharpoons \mathrm{pC}+\mathrm{qD}$ $\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\frac{[\mathrm{C}]^{\mathrm{p}}[\mathrm{D}]^{\mathrm{q}}}{[\mathrm{A}]^{\mathrm{m}}[\mathrm{B}]^{\mathrm{n}}}=\mathrm{K}_{\mathrm{c}}$

  2. $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

  3. $\mathrm{k}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

  4. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\text { Salt }]}{\text { Acid }}$

  5. $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log _{10} \frac{[\text { Salt }]}{[\text { Base }]}$

ELECTROCHEMISTRY

  1. $\mathrm{W}=\frac{\text { Eit }}{96500}$
  2. $\begin{aligned}
    & \frac{E_1}{E_2}=\frac{M_1}{M_2} \text { or } \frac{W_1}{W_2}=\frac{Z_1}{Z_2} \\
    & E_1=\text { equivalent weight } \\
    & E_2=\text { equivalent weight }
    \end{aligned}$
    W or M = mass deposited

  3. $\begin{aligned} & E_{\text {cell }} \text { or } E M F=\left[E_{\text {red }}(\text { cathode })-E_{\text {red }}(\text { anode })\right] \\ & E_{\text {eell }}^{\circ} \text { or } E M F^{\circ} \\ & =\left[E_{\text {red }}^{\circ}(\text { cathode })-E_{\text {red }}^{\circ}(\text { anode })\right]\end{aligned}$
  4. $\mathrm{E}=\mathrm{E}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln Q$
  5. $\mathrm{xA}+\mathrm{yB} \xrightarrow{\mathrm{ne}^{-}} \mathrm{mC}+\mathrm{nD}$
    The emf can be calculated as

    $\text { Ecell }=\mathrm{E}^{\circ} \text { cell }-\frac{0.059}{\mathrm{n}} \log \frac{[\mathrm{C}]^{\mathrm{m}}[\mathrm{D}]^{\mathrm{n}}}{[\mathrm{~A}]^x[\mathrm{~B}]^{\mathrm{y}}}$

  6. $\wedge_{\mathrm{m}}=\kappa \times \frac{1000}{\mathrm{c}}$

  7. $\wedge_{\text {eq }}=\frac{1000 \times \kappa}{\mathrm{N}}$

Solutions

  1. Mass $\%$ of a component $=\frac{\text { Mass of the component in the solution }}{\text { Total mass of the solution }} \times 100$
  2. Volume $\%$ of a component $=\frac{\text { Volume of the component }}{\text { Total volume of solution }} \times 100$
  3. Mass by Volume $\%$ of a component $=\frac{\text { Mass of the component }}{\text { Total volume of solution }} \times 100$
  4. Parts per million $=\frac{\text { Number of parts of the component }}{\text { Total number of parts of all components of the solution }} \times 10^6$
  5. Mole fraction of a component $=\frac{\text { Number of moles of the component }}{\text { Total number of moles of all the components }}$
  6. Molarity: $(M)=\frac{\text { No. of Moles of Solutes }}{\text { Volume of Solution in Liters }}$
  7. Molality: $(m)=\frac{\text { No. of Moles of Solutes }}{\text { Mass of solvent in } \mathrm{kg}}$
  8. $\left(P_T\right)=P_A^o X_A+P_B^o X_B$ ($\begin{aligned} & P_A=P_A^o X_A \\ & P_B=P_B^o X_B \\ & P_T=P_A+P_B\end{aligned}$)
  9. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w}}{\mathrm{M}} \times \frac{1000}{\mathrm{~W}}$
  10. $\Delta T_f=K_f \times \frac{w}{M} \times \frac{1000}{W}$
  11. $\Pi=C R T$
  12. $\begin{aligned} & \mathrm{i}=\frac{\text { Observed number of solute particles }}{\text { Number of particles initially taken }} \\ & \mathrm{i}=\frac{\text { Observed value of colligative property }}{\text { Theoretical value of colligative property }}\end{aligned}$

Chemical kinetics

  1. Unit of average velocity $=\frac{\text { Unit of concentration }}{\text { Unit of time }}=\frac{\text { mole }}{\text { litre second }}=$ mole litre $^{-1}$ second $^{-1}$
  2. $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$
    Rate w.r.t. $[\mathrm{A}]=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}} \times \frac{1}{\mathrm{a}}$
    Rate w.r.t. $[B]=-\frac{d[B]}{d t} \times \frac{1}{b}$
    Rate w.r.t. $[\mathrm{C}]=-\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}} \times \frac{1}{\mathrm{c}}$
    Rate w.r.t. $[\mathrm{D}]=-\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}} \times \frac{1}{\mathrm{~d}}$
  3. $\mathrm{R} \propto[\mathrm{A}]^{\mathrm{p}}[\mathrm{B}]^{\mathrm{q}}$
  4. Unit of Rate Constant-

    $\begin{aligned}
    & \text { The differential rate expression for } \mathrm{n}^{\text {th }} \text { order reaction is as follows: } \\
    & \qquad-\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \\
    & \text { or } \quad \mathrm{k}=\frac{\mathrm{dx}}{(\mathrm{a}-\mathrm{x})^{\mathrm{n}} \mathrm{dt}}=\frac{(\text { concentration })}{(\text { concentration })^{\mathrm{n}} \text { time }}=(\text { conc. })^{1-\mathrm{n}} \text { time }^{-1}
    \end{aligned}$

  5. For the first-order reaction,

    $k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_0}{[\mathrm{R}]}$

  6. $t_{1 / 2}=\frac{0.693}{k}$

  7. For any general nth order reaction it is evident that,

    $\mathrm{t}_{\frac{1}{2}} \propto[\mathrm{~A}]_0^{1-\mathrm{n}}$
    It is to be noted that the above formula is applicable for any general nth-order reaction except $\mathrm{n}=1$.

  8. Arrhenius Equation: $\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$

  9. $\log \frac{\mathrm{K}_2}{\mathrm{~K}_1}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right]$

JEE Main Important Formulas of Inorganic Chemistry

Coordination Compounds

  1. $\mathrm{EAN}=Z-O+2 L$
    Where:
    $\mathbf{Z}=$ Atomic number of the central metal atom/ion
    $\mathbf{O}=$ Oxidation state of the metal atom/ion
    L = Number of ligands (or donor atoms) $\times$ number of electrons donated per ligand

  2. Crystal Field Stabilization Energy (CFSE):
    Octahedral:

    $$
    \mathrm{CFSE}=(-0.4 x+0.6 y) \Delta_0
    $$

    Tetrahedral:

    $$
    \mathrm{CFSE}=(-0.6 x+0.4 y) \Delta_t
    $$

    where $x=t_2 g$ electrons, $y=$ e_g electrons

d- & f-Block Elements

  1. Magnetic Moment:

    $\mu=\sqrt{n(n+2)} \mathrm{BM}$

Chemical Bonding and Molecular Structure

  1. Formal Charge:

    $\text { F.C. }=V-N-\frac{B}{2}$

    ( $\mathrm{V}=$ valence electrons, $\mathrm{N}=$ non-bonding, $\mathrm{B}=$ bonding electrons)

  2. Bond Order (Molecular Orbital Theory):

    $\text { Bond Order }=\frac{\left(N_b-N_a\right)}{2}$

  3. Dipole Moment:

    $\mu=q \times d$

    ( $q=$ charge,$d=$ distance between charges)

JEE Main Important Formulas: Inorganic Chemistry

Some Basic Principles of Organic Chemistry

  1. Application of Inductive Effect

    The decreasing -I effect or increasing +I effect order is as follows:

    $\begin{aligned}
    & -\mathrm{NH}_3+>-\mathrm{NO}_2>-\mathrm{SO}_2 \mathrm{R}>-\mathrm{CN}>-\mathrm{SO}_3 \mathrm{H}>-\mathrm{CHO}>-\mathrm{CO}>-\mathrm{COOH}>-\mathrm{F}>-\mathrm{COCl}>-\mathrm{CONH}_2>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}>-\mathrm{OR}>-\mathrm{OH}>-\mathrm{NR}_2>-\mathrm{NH}_2> \\
    & -\mathrm{C}_6 \mathrm{H}_5>-\mathrm{CH}=\mathrm{CH}_2>-\mathrm{H}
    \end{aligned}$

  2. Degree of Unsaturation (DU or IHD):

    $\mathrm{DU}=\frac{2 C+2-H+N-X}{2}$

    ( $\mathrm{C}=$ carbon, $\mathrm{H}=$ hydrogen, $\mathrm{N}=$ nitrogen, $\mathrm{X}=$ halogen)

Hydrocarbons

  1. Alkanes: $C_n H_{2 n+2}$
  2. Alkenes: $C_n H_{2 n}$
  3. Alkynes: $C_n H_{2 n-2}$

Carboxylic Acids and Derivatives

Method of Preparation of Carboxylic Acid

1701851769429

Preparation tips for JEE Mains

Given below are some tips to help you prepare for JEE Main and score good marks in the exam:

1. First, students need to understand the Syllabus and Exam Pattern so that they can refer to the JEE Main syllabus from the official website.

2. Try to identify the important and high-weightage topics and prepare according to that.

3. Create an effective study plan according to your preparation level. Divide your preparation into monthly, weekly, and daily targets and allocate more time to difficult subjects or topics.

4. Students must focus on conceptual clarity; they must understand the logic and derivations behind every formula.

5. Try to solve questions regularly. Solve previous years' JEE Main question papers and attempt mock tests and sample papers regularly.

How to Memorize Chemistry Formulas Effectively

Students find it difficult to learn formulas for JEE Main, but with the right approach, they can remember them. Given below are some points to remember:

1. Students must try to understand why a formula works and how chemical reactions occur, and their mechanism.

2. Then break down formulas into chapters or topics.

3. To learn these formulas easily, try to make a formula notebook.

4. Sometimes students must try to make Mnemonics and short tricks, as it helps in quick revision.

5. Try to solve as many questions and revise

6. Try to use diagrams and flowcharts.

JEE Main Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: Which part of chemistry has many formulas ?
A:

Chemistry has three subparts (Physical, inorganic and organic). Physical chemistry has many numericals based on different formulas.

Q: Is the class 12 syllabus important for the JEE Main Exam ?
A:

Yes, Class 12 syllabus carries more than 50% of weightage, so it is important for JEE Main Exam.

Q: What is the JEE Mains ?
A:

JEE Main is an exam conducted for those aspirants who want to take admission in NIITs, IITs and other engineering colleges, and it is also an eligibility test for JEE advance.

Articles
|
Upcoming Engineering Exams
Ongoing Dates
HITSEEE Application Date

5 Nov'25 - 22 Apr'26 (Online)

Ongoing Dates
SNUSAT Application Date

19 Nov'25 - 31 Mar'26 (Online)

Certifications By Top Providers
Basic Programming using Python
Via Indian Institute of Technology Bombay
Introduction to Biostatistics
Via Indian Institute of Technology Bombay
Programming Basics
Via Indian Institute of Technology Bombay
C-Based VLSI Design
Via Indian Institute of Technology Guwahati
MERN Stack Developer
Via Indian Institute of Technology Kanpur
Udemy
 1525 courses
Swayam
 817 courses
NPTEL
 773 courses
Coursera
 697 courses
Edx
 608 courses
Explore Top Universities Across Globe

Questions related to JEE Main

On Question asked by student community

Have a question related to JEE Main ?

Hey there,

Your OBC-NCL certificate will not be valid for the JEE Mains 2026 application as it is from June 2024. You can apply for a new one as soon as possible. For the JEE Mains, the OBC-NCL certificate should be issued on or after 1 April 2025.

And as for your Aadhar, the mistakes in your name and Date of Birth will be an issue during the document verification process. The details should match your 10th-class certificate. So you will also need to update it as soon as possible.

Hope it helps!!!

Hello Satyam,

Yes, your EWS certificate is valid.

In Bihar, the EWS certificate can be issued by the Circle Officer, BDO, SDO, or DM. So a certificate signed by the Circle Officer (Revenue Officer) is acceptable.

If the format of your certificate is the same as the Central Government EWS format, then it is valid for JEE Main registration and also for JoSAA counselling. The heading “Government of Bihar” does not create any problem.

Just remember one point:
For JoSAA 2026 , you will need an EWS certificate issued on or after 1 April 2025. Even if your current certificate works for registration, you must update it before counselling.

Hope it helps !

Hello murali

No, your son is not eligible for OBC NCL for IIT JEE because you fall in the "creamy layer" occupational category, regardless of your current employment status or family income. Students whose family income is less than Rs. 8 lakhs annually and they are not belong to the "creamy layer".

Note -

  • Children of professionals like doctors, lawyers, and engineers, as well as government officials in Group A and Group B services, are generally considered in the "Creamy layer" category.
  • Your current unemployment does not change your occupational status. The eligibility is based on your profession, not your current job status.

Thank You

Hello,

You can fill the JEE Main form even if you are a private candidate

Write the name of the school/board from where you are appearing as a private candidate .
If your Class 12 admit card or registration slip shows a school/centre name, use that exactly.

If your board lists you as a “Private Candidate” under the board name , then write:

CBSE – Private Candidate
(or your board name – Private Candidate)

Use the pin code of the examination centre/school mentioned on your Class 12 private candidate admit card or registration details.

If your board does not give any school address and only shows the regional office address, then use the regional office address pin code given by your board.

Hope it helps !

Hello Aspirant

You should not leave the OBC-NCL certificate ID blank in the JEE Main form it can create problems later.

NTA wants the certificate details while filling the form, not just at counselling. If you can, apply for the OBC-NCL certificate immediately so you get the ID on time.

If you fail to submit the certificate during counselling, your category will shift to General. It’s safer to enter OBC-NCL only if you’re sure you’ll get the certificate before counselling.

Hope it will help you