Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
To score good marks in JEE Mains Maths students are required to solve selected questions from selected topics in place of solving hundreds and thousands of questions from any topics given in the syllabus. In this article, we have provided Top 20 Repeated JEE Mains Questions to Score 90+ in Mathematics because there are some repetitive patterns followed by JEE Main over the years specially in Maths. Many questions are asked repeatedly with small changes in values, wording, or options. If students can identify those repetitive topics then it becomes very easy for them to score good marks.
The JEE Main 2026 question paper will be offered in 13 languages to support candidates from different regions of India. The available languages are English, Hindi, Assamese, Bengali, Gujarati, Kannada, Malayalam, Marathi, Odia, Punjabi, Tamil, Telugu, and Urdu. Candidates can choose their preferred language while filling out the application form, and the selected language will be used in their question paper during the exam. This measure aims to ensure accessibility and a fair testing experience for all students nationwide.
This Story also Contains
Mathematics is one of the toughest and lengthy subjects in JEE Main because most of the questions are calculation based that requires proper practice. In this article we are providing the Top 20 repeated JEE Mains questions in Mathematics by solving those questions students can cover a major part of the syllabus which helps them to maximise accuracy and saving their preparation time.
Some chapters contribute to a large portion of the questions asked every year in JEE Main. Students can study these high weightage chapters from the entire JEE Main Maths syllabus to score maximum marks. Students can start with NCERT to get the basic idea about the type of questions covered in these chapters. Given below 5 chapters based on previous year question analysis, that are most important and frequently asked in JEE Main.
Chapter Name | Percentage Distribution |
Co-ordinate geometry | 13.11% |
Integral Calculus | 10.43% |
Limit, continuity and differentiability | 10.28% |
Complex numbers and quadratic equations | 7.04% |
Matrices and Determinants | 7.04% |
To score maximum marks it is important to focus more on the specific topics that are asked in JEE Main.These topics are those from which JEE Main Mathematics high scoring questions are asked, instead of studying the entire chapter prioritizing the topics mentioned below in the form of table:
Concept Name | Total Number of Questions From the Concept |
Linear Differential Equation | 79 |
Area Bounded by Two Curves | 73 |
Dispersion (Variance and Standard Deviation) | 60 |
Vector (or Cross) Product of Two Vectors | 54 |
General Term of Binomial Expansion | 45 |
The JEE Main Mathematics PYQs most repeated are based on concepts that appear repeatedly in previous year exams. These questions are highly recommended and mostly based on NCERT that helps students to score good marks in JEE main. Refer to the JEE Main Maths questions for 90+ marks given below:
Question 1: Let PQ be a focal chord of the parabola $y^2=36 x$ of length 100, making an acute angle with the positive x-axis. Let the ordinate of P be positive and M be the point on the line segment PQ such that $\mathrm{PM}: \mathrm{MQ}=3: 1$. Then which of the following points does NOT lie on the line passing through M and perpendicular to the line PQ?
(1) $(3,33)$
(2) $(6,29)$
(3) $(-6,45)$
(4) $(-3,43)$
Answer:
$9\left(t+\frac{1}{t}\right)^2=100$
$t=3$
$\Rightarrow \mathrm{P}(81,54) \& Q(1,-6)$
$\mathrm{M}(21,9)$
$\Rightarrow L$ is $(y-9)=\frac{-4}{3}(x-21)$
$3 y-27=-4 x+84$
$4 x+3 y=111$
Hence, the answer is option 4.
Question 2: Let the locus of the center $(\alpha, \beta), \beta>0$,, of the circle which touches the circle $x^2+(y-1)^2=1$ externally and also touches the x-axis be L. Then the area bounded by L and the line $y=4$ is:
(1) $\frac{32 \sqrt{2}}{3}$
(2) $\frac{40 \sqrt{2}}{3}$
(3) $\frac{64}{3}$
(4) $\frac{32}{3}$
Answer: $(\alpha-0)^2+(\beta-1)^2=(\beta+1)^2$
$\alpha^2=4 \beta$
$x^2=4 y$
$A=2 \int_0^4\left(4-\frac{x^2}{4}\right) d x$
$=2\left[4 x-\frac{x^3}{12}\right]_0^4$
$=\frac{64}{3}$
Hence, the answer is the option (3).
Question 3: Let the abscissae of the two points P and Q on a circle be the roots of $x^2-4 x-6=0$ and the ordinates of P and Q be the roots of $y^2+2 y-7=0$. If PQ is the diameter of the circle $x^2+y^2+2 a x+2 b y+c=0$, then the value of $(a+b-c)$ is
(1) 12
(2) 13
(3) 14
(4) 16
Answer: The equation of the circle with PQ as the diameter is
$x^2-4 x-6+y^2+2 y-7=0$
$\Rightarrow x^2+y^2-4 x+2 y-13=0$
$\therefore a=-2, b=1, c=-13$
$\therefore a+b-c=12$
Hence, the answer is the option (1).
Question 4: If the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the y-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the y-axis, then the eccentricity of the ellipse is
(1) $\frac{5}{7}$
(2) $\frac{2 \sqrt{6}}{7}$
(3) $\frac{3}{7}$
(4) $\frac{2 \sqrt{5}}{7}$
Answer: Line 1 and ellipse cut x-axis at x=7 and line 2 and ellipse cut y-axis at $\mathrm{y}=2 \sqrt{6}$.
$\therefore \quad \mathrm{a}=7, \quad \mathrm{~b}=2 \sqrt{6}$
$\mathrm{e}^2=1-\frac{\mathrm{b}^2}{\mathrm{a}^2}=1-\frac{24}{49}=\frac{25}{49}$
$\Rightarrow \mathrm{e}=\frac{5}{7}$
Hence, the answer is the option (1).
Question 5: If for all real triplets $(a, b, c), f(x)=a+b x+c x^2$ then $\int_0^1 f(x) d x$ is equal to:
(1) $2\left\{3 f(1)+2 f\left(\frac{1}{2}\right)\right\}$
(2) $\frac{1}{3}\left\{f(0)+f\left(\frac{1}{2}\right)\right\}$
(3) $\frac{1}{2}\left\{f(1)+3 f\left(\frac{1}{2}\right)\right\}$
(4) $\frac{1}{6}\left\{f(0)+f(1)+4 f\left(\frac{1}{2}\right)\right\}$
Answer: $\int_0^1\left(a+b x+c x^2\right) d x=a x+\frac{b x^2}{2}+\left.\frac{c x^3}{3}\right|_0 ^1=a+\frac{b}{2}+\frac{c}{3}$
f(1) = a + b + c
f(0) = a
$f\left(\frac{1}{2}\right)=a+\frac{b}{2}+\frac{c}{4}$
Hence, the answer is option 4.
Question 6: The integral $\int \frac{d x}{(x+4)^{8 / 7}(x-3)^{6 / 7}}$ is equal to :
(where C is a constant of integration)
(1) $-\left(\frac{x-3}{x+4}\right)^{-1 / 7}+C$
(2) $\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{3 / 7}+C$
(3) $\left(\frac{x-3}{x+4}\right)^{1 / 7}+C$
(4) $-\frac{1}{13}\left(\frac{x-3}{x+4}\right)^{-13 / 7}+C$
Answer: $\int\left(\frac{x-3}{x+4}\right)^{\frac{-6}{7}} \frac{1}{(x+4)^2} d x$ Let $\frac{x-3}{x+4}=t^7 \frac{7}{(x+4)^2} d x=7 t^6 d t \int t^{-6} t^6 d t=t+c\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}+c$
Hence, the answer is option 3.
Question 7: Let $f(x)=\int \frac{\sqrt{x}}{(1+x)^2} d x(x \geqslant 0)$. Then $f(3)-f(1)$ is equal to:
(1) $-\frac{\pi}{12}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
(2) $\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
(3) $-\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
(4) $\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$
Answer: $f(x)=\int_1^3 \frac{\sqrt{x} d x}{(1+x)^2}=\int_1^{\sqrt{3}} \frac{t \cdot 2 t d t}{\left(1+t^2\right)^2}($ put $\sqrt{x}=t)$
$=\left(-\frac{t}{1+t^2}\right)_t^{\sqrt{3}}+\left(\tan ^{-1} t\right)_1^{\sqrt{3}}[$ Applying by parts $]$
$=-\left(\frac{\sqrt{3}}{4}-\frac{1}{2}\right)+\frac{\pi}{3}-\frac{\pi}{4}$
$=\frac{1}{2}-\frac{\sqrt{3}}{4}+\frac{\pi}{12}$
Hence, the answer is option 4.
Question 8: The value of $\sum_{n=1}^{100} \int_{n-1}^n e^{x-[x]} d x$ where [x] is the greatest integer $\leq x$, is :
(1) $100(e-1)$
(2) 100e
(3) 100(1-e)
(4) 100(1+e)
Answer: $\sum_{n=1}^{100} \int_{n-1}^n e^{\{x\}} d x$, period of $\{x\}=1 \sum_{n=1}^{100} \int_0^1 e^{\{x\}} d x=\sum_{n=1}^{100} \int_0^1 e^x d x \sum_{n=1}^{100}(e-1)=100(e-1)$
Note that:
$x-[x]=\{x\}$, where $[\mathrm{x}]$ is the greatest integer $\leq x$ and $\{x\}$ fractional part of $x$.
Hence, the answer is option 1.
Question 9: Let $f: R \rightarrow R$ defined as $f(x)=\left\{\begin{array}{c}x^5 \sin \left(\frac{1}{x}+5 x^2\right), x<0 \\ 0, x=0 \\ x^5 \cos \left(\frac{1}{x}+\lambda z^2, x<0\right)\end{array}\right.$ The value of $\lambda$ for which $f^{\prime \prime}(x)$ exists is.
(1) 2
(2) 3
(3) 5
(4) 6
Answer: $f^{\prime}(x)=\left\{\begin{array}{c}5 x^4 \sin \left(\frac{1}{x}\right)-x^3 \cos \left(\frac{1}{x}\right)+10 x, x<0 \\ 0, \quad x=0 \\ 5 x^4 \cos \left(\frac{1}{x}\right)+x^3 \sin \left(\frac{1}{x}\right)+2 \lambda, x>0\end{array}\right.$
$f^{\prime \prime}(x)=\left\{\begin{array}{c}\text { term having } \mathrm{x} \text { in muliplication }+10, x<0 \\ 0, \quad x=0 \\ \text { term having } \mathrm{x} \text { in muliplication }+2 \lambda, x>0\end{array}\right.$
L.H.L = R.H.L.
$2 \lambda=10 \lambda=5$
Hence, the answer is option (3).
Question 10: Let f be a twice differentiable function on (1,6). If $(2)=8, f^{\prime}(2)=5, f^{\prime}(x) \geq 1$ and $f^{\prime \prime}(x) \geq 4$, for all $x \epsilon(1,6)$ then:
(1) $f(5)+f^{\prime}(5) \leq 26$
(2) $f(5)+f^{\prime}(5) \geq 28$
(3) $f(5)+f^{\prime \prime}(5) \leq 20$
(4) $f(5) \leq 10$
Answer: $\mathrm{f}(2)=8, \mathrm{f}^{\prime}(2)=5, \mathrm{f}^{\prime}(\mathrm{x}) \geq 1, \mathrm{f}^{\prime \prime}(\mathrm{x}) \geq 4, \forall \mathrm{x} \in(1,6)$
$f^{\prime \prime}(x)=\frac{f^{\prime}(5)-f^{\prime}(2)}{5-2} \geq 4 \Rightarrow f^{\prime}(5) \geq 17$
$f^{\prime}(x)=\frac{f(5)-f(2)}{5-2} \geq 1 \Rightarrow f(5) \geq 11$
$f^{\prime}(5)+f(5) \geq 28$
Hence, the answer is option 2.
Question 11: The population P=P(t) at time 't' of ascertain species follows the differential equation. Then the time at which the population become zero:
(1) $\log _e 18$
(2) $\frac{1}{2} \log _e 18$
(3) $\log _e 9$
(4) $2 \log _e 18$
Answer: $\frac{\mathrm{dP}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{P}(\mathrm{t})-900}{2}$
$\int_0^t \frac{\mathrm{dP}(\mathrm{t})}{\mathrm{P}(\mathrm{t})-900}=\int_0^{\mathrm{t}} \frac{\mathrm{dt}}{2}$
$\{\ell \mathrm{n}|\mathrm{P}(\mathrm{t})-900|\}_0^{\mathrm{t}}=\left\{\frac{\mathrm{t}}{2}\right\}_0^{\mathrm{t}}$
$\ell \mathrm{n}|\mathrm{P}(\mathrm{t})-900|-\ell \mathrm{n}|\mathrm{P}(0)-900|=\frac{\mathrm{t}}{2}$
$\ell \mathrm{n}|\mathrm{P}(\mathrm{t})-900|-\ln 50=\frac{\mathrm{t}}{2}$
Let at $t=t_1, P(t)=0$ hence
$\ln |\mathrm{P}(\mathrm{t})-900|-\ln 50=\frac{\mathrm{t}_1}{2}$
$\mathrm{t}_1=2 \ell \mathrm{n} 18$
Hence, the answer is option 4.
Question 12: The function $f(x)=\frac{4 x^3-3 x^3}{6}-2 \sin x+(2 x-1) \cos x$
(1) Decreases in $\left(-\infty, \frac{1}{2}\right)$
(2) Increases in $\left(-\infty, \frac{1}{2}\right)$
(3) Increases in $\left(\frac{1}{2}, \infty\right)$
(4) Decreases in $\left(\frac{1}{2}, \infty\right)$
Answer: $f(x)=\frac{4 x^3-3 x^2}{6}-2 \sin x+(2 x-1) \cos x$
$f^{\prime}(x)=(2 x-1)(x-\sin x)$
$\Rightarrow \mathrm{f}(\mathrm{x}) \geq 0$ in $\mathrm{x} \in\left[\frac{1}{2}, \infty\right)$
and $f(x) \leq 0$ in $x \in\left(-\infty, \frac{1}{2}\right]$
Hence, the answer is option 3.
Question 13: Imaginary part of $(3+2 \sqrt{-54})^{\frac{1}{2}}-(3-2 \sqrt{-54})^{\frac{1}{2}}$ can be:
(1) 6
(2) $\sqrt{6}$
(3) $-\sqrt{6}$
(4) $-2 \sqrt{6}$
Answer: $(3+2 \sqrt{-54})^{1 / 2}-(3-2 \sqrt{-54})^{1 / 2}$
$(3+2 \cdot 3 \sqrt{6} i)^{1 / 2}-(3-2 \cdot 3 \sqrt{6} i)^{1 / 2}$
$\left[3^2+(\sqrt{6} i)^2+2 \cdot 3 \sqrt{6} i\right]^{1 / 2}-\left[3^2+(\sqrt{6} i)^2-2 \cdot 3 \sqrt{6} i\right]^{1 / 2}$
$|3+\sqrt{6} i|-|3-\sqrt{6}|$
$b_1= \pm \sqrt{6}$ and $b_2= \pm \sqrt{6}$
So the value of $b_1+b_2=2 \sqrt{6} \quad$ or $\quad-2 \sqrt{6} \quad$ or $\quad 0$
Hence, the answer is option 4.
Question 14: Let $\alpha$ and $\beta$ be the roots of $x^2-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^2-6 x+q=0$. If $\alpha, \beta, \gamma, \delta$. forms a geometric progression. Then the ratio $(2 q+p):(2 q-p)$ is :
(1) 3:1
(2) 9:7
(3) 5:3
(4) 33:31
Answer: The general term or $\mathrm{n}^{\text {th }}$ term of a geometric progression is $a_n=a r^{n-1}$
Now,
$x^2-3 x+p=0$ roots are $\alpha \& \beta \alpha+\beta=3 \alpha \beta=p$
$x^2-6 x+q=0$ roots are $\gamma \& \delta \gamma+\delta=6 \gamma \delta=q$
$\alpha, \beta, \gamma \& \delta$ are in GPLet, $\alpha=a, \beta=a r, \gamma=a r^2$ and $\delta=a r^3$
$a+a r=3 \quad \ldots(1) a r^2+a r^3=6 \quad \ldots(2)(2) \div(1) r^2=2$
So, $\frac{2 q+p}{2 q-p}=\frac{2 r^5+r}{2 r^5-r}=\frac{2 r^4+1}{2 r^4-1}=\frac{9}{7}$
Hence, the answer is option 2.
Question 15: Let $\lambda \neq 0$ be in R. If $\alpha$ and $\beta$ are the roots of the equation, $x^2-x+2 \lambda=0$ and $\alpha$ and $\gamma$ are the roots of the equation, $3 x^2-10 x+27 \lambda=0$, then $\frac{\beta \gamma}{\lambda}$ is equal to:
(1) 25
(2) 18
(3) 9
(4) 36
Answer: $\alpha+\beta=1, \alpha \beta=2 \lambda \alpha+\beta=\frac{10}{3}, \quad \alpha \gamma=\frac{27 \lambda}{3}=9 \lambda \gamma-\beta=\frac{7}{3}$
$\frac{\gamma}{\beta}=\frac{9}{2} \Rightarrow \gamma=\frac{9}{2} \beta=\frac{9}{2} \times \frac{2}{3} \Rightarrow \gamma=3 \frac{9}{2} \beta-\beta=\frac{7}{3} \frac{9}{2} \beta=\frac{7}{3} \Rightarrow \beta=\frac{2}{3}$
$\alpha=1-\frac{2}{3}=\frac{1}{3} 2 \lambda=\frac{2}{9} \Rightarrow \lambda=\frac{1}{9} \frac{\beta \gamma}{\lambda}=\frac{\frac{2}{3} \times 3}{\frac{1}{9}}=18$
Hence, the answer is option (2).
Question 16: Let p and q are two positive numbers such that $p+q=2$ and $p^4+q^4=272$. Then p and q are root of equation:
(1) $x^2-2 x+8=0$
(2) $x^2-2 x+136=0$
(3) $x^2-2 x+16=0$
(4) $x^2-2 x+2=0$
Answer: $\left(p^2+q^2\right)^2-2 p^2 q^2=272\left((p+q)^2-2 p q\right)^2-2 p^2 q^2=27216-16 p q+2 p^2 q^2=272(p q)^2-8 p q-128=0 p q=\frac{8 \pm 24}{2}=16,-8 p q=16$
Hence, the answer is option 3.
Question 17: Let $\mathrm{S}=\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in\{1,2,3, \ldots 100\}\right\}$ and let $\mathrm{T}_{\mathrm{n}}=\left\{\mathrm{A} \in \mathrm{S}: \mathrm{A}^{\mathrm{n}(\mathrm{n}+1)}=\mathrm{I}\right\}$. Then the number of elements in $\cap_{n=1}^{100} T_n$ is:
Answer: $\mathrm{S}=\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right] ; \quad \mathrm{a}, \mathrm{b} \in\{1,2,3, \ldots 100\}$
$\mathrm{T}_{\mathrm{n}}=\left\{\mathrm{A} \in \mathrm{s}: \mathrm{A}^{\mathrm{n}(\mathrm{n}+1)}=\mathrm{I}\right\}$
$\mathrm{A}^2=\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]=\left[\begin{array}{cc}1 & -a+a b \\ 0 & b^2\end{array}\right]$
b should be 1
$A^2=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ hence a can take any value
Total number of elements = 100
Hence, the answer is 100.
Question 18: Let $A=\left(\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)$. Then the number of elements in the set $\left\{(\mathrm{n}, \mathrm{m}): \mathrm{n}, \mathrm{m} \in\{1,2, \ldots \ldots, 10\}\right.$ and $\left.\mathrm{nA}^{\mathrm{n}}+\mathrm{mB}^{\mathrm{m}}=\mathrm{I}\right\}$ is ________.
Answer: $\mathrm{A}^2=\mathrm{A}$ and $\mathrm{B}^2=\mathrm{B}$
Therefore equation $\mathrm{nA}^{\mathrm{n}}+\mathrm{mB}^{\mathrm{m}}=\mathrm{I}$ becomes $\mathrm{nA}+\mathrm{mB}=\mathrm{I}$, which gives $\mathrm{m}=\mathrm{n}=\mathrm{I}$
So, only one element i.e. (1,1) is possible.
Hence, the answer is 1.
Question 19: Let the eccentricity of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is reciprocal to that of the hyperbola $2 x^2-2 y^2=1$. If the ellipse
intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is _____:
Answer: $\mathrm{E}: \frac{\mathrm{x}^4}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{b^2}=1 \rightarrow \mathrm{e}$
$H: x^2-y^2=\frac{1}{2} \Rightarrow e^{\prime}=\sqrt{2}$
$\mathrm{e}=\frac{1}{\sqrt{2}}$
$\because e^2=\frac{1}{2}$
$1-\frac{b^2}{a^2}=\frac{1}{2} \Rightarrow \frac{b^2}{a^2}=\frac{1}{2}$$a^2=2 b^2$
$\mathrm{E} \& \mathrm{H}$ are at a right angle they are confocal Focus of Hyperbola = focus of ellipse
$\left( \pm \frac{1}{\sqrt{2}} \cdot \sqrt{2}, 0\right)=\left( \pm \frac{\mathrm{a}}{\sqrt{2}}, 0\right)$
$\mathrm{a}=\sqrt{2}$
$\because a^2=2 b^2 \Rightarrow b^2=1$
Length of $L R=\frac{2 b^2}{a}=\frac{2(1)}{\sqrt{2}}$
$=\sqrt{2}$Square of LR $=2$
Hence, the answer is the 2.
Question 20: If the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the x-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the y-axis, then the eccentricity of the ellipse is
Answer: Line 1 and ellipse cut x-axis at x=7 and line 2 and ellipse cut y-axis at $\mathrm{y}=2 \sqrt{6}$.
$\therefore \quad \mathrm{a}=7, \quad \mathrm{~b}=2 \sqrt{6}$
$\mathrm{e}^2=1-\frac{\mathrm{b}^2}{\mathrm{a}^2}=1-\frac{24}{49}=\frac{25}{49}$
$\Rightarrow \mathrm{e}=\frac{5}{7}$
Hence, the answer is $\frac{5}{7}$
Frequently Asked Questions (FAQs)
Topics from which Top 20 repeated JEE Mains questions in Mathematics asked includes Co-ordinate geometry, Integral Calculus, Limit, continuity and differentiability, Complex numbers and quadratic equations, Matrices and Determinants.
Students can identify questions by reviewing previous year JEE Main question papers and study material from various educational websites.
Topics like Linear Differential Equation, Area Bounded by Two Curves, Dispersion (Variance and Standard Deviation), Vector (or Cross) Product of Two Vectors and General Term of Binomial Expansion covers the major portion of exam.
Yes, because by practising repeated questions students can understand the topics and difficulty level of questions which help them to develop understanding and accuracy.
To score 90+ marks in JEE Main Maths students must understand the basic concepts, give priority to high-weightage chapters and regularly solve JEE Main Mathematics high scoring questions.
On Question asked by student community
Hello aspirant,
With a 90 percentile in JEE Mains and belonging to the EWS category, you have a decent chance for some IIITs, especially newer or lower-ranked ones like IIIT Pune, Nagpur, Vadodara, or Lucknow, or non-CSE branches in better IIITs, but getting top IIITs (like IIIT Hyderabad/Delhi) or core
Hello,
Yes, attendance is compulsory in Class XI and XII.
As per school and board rules, students must maintain minimum attendance, usually around 75%. Schools can stop students from appearing in board exams if attendance is short.
Even if a student is preparing for JEE or any other competitive exam
Hello,
You can find here the direct links to download the JEE Main last 10 years PYQ PDFs from the Official Careers360 website.
Kindly visit this link to access the question papers : Last 10 Years JEE Main Question Papers with Solutions PDF
Hope it helps !
Hello Harika,
Firstly, you cannot prepare for JEE in 8 days if you havent studied before. But still, You can try solving the previous year question papers. Here's a Link for the same
HELLO,
If you are from General category with 57 percent in 12th then to appear for JEE Advanced you need to be in top percentile of your board as the eligibility for JEE advanced you need at least 75 percent in 12th or in the top 20 percentile of your
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
National level exam conducted by VIT University, Vellore | Ranked #16 by NIRF for Engg. | NAAC A++ Accredited
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Application Deadline: 15th Jan
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted
World-class and highly qualified engineering faculty. High-quality global education at an affordable cost