जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित
  • लेख
  • जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित

जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित

Switch toEnglish IconHindi Icon
Nitin SaxenaUpdated on 04 Feb 2025, 06:42 PM IST
Switch toEnglish IconHindi Icon

जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित: नेशनल टेस्टिंग एजेंसी ने 4 फरवरी को जेईई मेन आंसर की जारी कर दी है। उम्मीदवार 6 फरवरी तक आंसर की को चुनौती दे सकते हैं। क्या आप जेईई मेन 2025 28 जनवरी शिफ्ट 2 प्रश्न पत्र की तलाश में हैं? जेईई मेन 28 जनवरी शिफ्ट 2 परीक्षा समाप्त हो चुकी है। विभिन्न कोचिंग संस्थानो द्वारा विस्तृत विश्लेषण के साथ प्रश्न पत्र जारी कर दिये गए है। जिससे उम्मीदवारों को आगे की जेईई मेन 2025 परीक्षा की तैयारी में में मदद मिलेगी। करियर360 में हमारे विशेषज्ञ फ़ैकल्टी आपको परीक्षा के बाद समाधान के साथ जेईई मेन्स 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र प्रदान कर रहें है, जिसमें भौतिकी, रसायन विज्ञान और गणित शामिल है। तब तक, आप 22, 23 और 24 जनवरी को आयोजित जेईई मेन्स 2025 प्रश्न पत्रों के समाधान का अभ्यास कर सकते हैं।

जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित
जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित

जेईई परीक्षा पैटर्न को समझने और अपनी तैयारी की रणनीति में सुधार करने के लिए सटीक समाधान, कठिनाई स्तर की जानकारी और विषय-वार विश्लेषण तक पहुंचें। यह संसाधन आगामी जेईई मेन परीक्षा में उत्कृष्टता प्राप्त करने के इच्छुक उम्मीदवारों के लिए एकदम उपयुक्त है। प्रश्न पत्र और समाधान पीडीएफ प्रारूप में निःशुल्क डाउनलोड करें। आइए अधिक जानकारी के लिए पूरा लेख पढ़ें और प्रश्नों, अध्यायों, वेटेज और पेपर पैटर्न के गहन विश्लेषण के साथ जेईई मेन 2025 शिफ्ट 2 प्रश्न पत्र के बारे में जानें।

जेईई मेन 2025 जनवरी 28 शिफ्ट 2 प्रश्न पत्र समाधान सहित (JEE Main 2025 January 28 Shift 2 Question Paper with Solutions)

जेईई मेन 2025 शिफ्ट 2 प्रश्न पत्र हल सहित परीक्षा के आयोजन के बाद इस पेज पर उपलब्ध कराए गए है। हालाँकि, ये संसाधन बाद की शिफ्ट में उपस्थित होने वाले उम्मीदवारों और अप्रैल सत्र की तैयारी करने वालों के लिए महत्वपूर्ण हैं। इससे छात्रों को अप्रैल सत्र के साथ-साथ अन्य शिफ्टों में परीक्षा देने वाले छात्रों की तैयारी में भी मदद मिलेगी।

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

28 जनवरी शिफ्ट 2

Q.1 Consider the following oxides,

$\mathrm{V}_2 \mathrm{O}_3, \mathrm{~V}_2 \mathrm{O}_4 \text { and } \mathrm{V}_2 \mathrm{O}_5$
Change in oxidation state of vanadium when amphoteric oxide reacts with acids to form $\mathrm{VO}_4{ }^{+}$is

Q.2 Q. Bohr's model is applicable for single electron atom of atomic number Z. Dependency of frequency of rotation of electron in $n^{\text {th }}$ principal quantum number is proportional to
$1 \quad \mathrm{Z} / \mathrm{n}^2$
$2 \quad Z^2 / n^3$
$3 \quad n^3 / Z$
$4 \quad Z / n$

Q.3 Which has maximum oxidising power among the following
$1 . \mathrm{VO}_2{ }^*$
$2 . \mathrm{Cr}_2 \mathrm{O}_7{ }^{2-}$
$3 .\mathrm{MnO}_4^{-}$
$4 .\mathrm{TiO}_2$

Q.4 Let $f(x)=\int \frac{d x}{x^{1 / 4}\left(x^{1 / 4}+1\right)}$. If $f(0)=-6$, then $f(2)$ is
$1 \quad 4\left[\frac{1}{\sqrt{2}}-2^{1 / 4}+\ln \left|1+2^{1 / 4}\right|\right]-6$
$2 \quad 4\left[\frac{1}{\sqrt{2}}-2^{1 / 4}+\ln \left|1+2^{1 / 4}\right|\right]+6$
$3 \quad 4\left[\frac{1}{\sqrt{2}}+2^{1 / 3}+\ln \left|2^{1 / 4}\right|\right]-6$
$4 \quad 4\left[3+2^{1 / 3}-\ln 2^{1 / 4}\right]+6$

Q.5 No. of Paramagnetic species among the following is

$
\mathrm{O}_2, \mathrm{O}_2 \cdot, \mathrm{O}_2^{-}, \mathrm{NO}_2, \mathrm{NO}, \mathrm{CO}
$

Q.6 How many of the following molecules are polar?

$
\mathrm{CH}_4, \mathrm{CCl}_4, \mathrm{CH}_2 \mathrm{Cl}_2, \mathrm{H}_2 \mathrm{O}, \mathrm{NH}_3, \mathrm{H}_2 \mathrm{O}_2, \mathrm{O}_2 \mathrm{~F}_2
$

Q.7 In an electromagnetic wave, the magnetic field is given as $\vec{B}=\left(\frac{\sqrt{3}}{2} \hat{\imath}+\frac{1}{2} \hat{\jmath}\right) 30 \sin (\omega t-k z)$, the corresponding electric field is
$1 \quad\left(\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\jmath}\right) 9 \times 10^9 \sin (\omega t-k z)$
$2\left(\frac{1}{2} \hat{\imath}-\frac{\sqrt{3}}{2} \hat{\jmath}\right) 9 \times 10^9 \sin (\omega t-k z)$
$3\left(\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\jmath}\right) 9 \times 10^9 \cos (\omega t-k z)$
$4 \quad\left(\frac{1}{2} \hat{\imath}-\frac{\sqrt{3}}{2} \hat{\jmath}\right) 9 \times 10^9 \cos (\omega t-k z)$

Q.8 For concave mirror, distance between object and image $=20 \mathrm{~cm}$ and $m=-3$ find focal length

Q.9

Q. Evaluate

$
\sum_{r=1}^{13} \frac{1}{\sin \left[\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right] \sin \left[\frac{\pi}{4}+\frac{r \pi}{6}\right]}
$

$1 \quad2 \sqrt{3}+2$
$2 \quad 2 \sqrt{3}-2$
$3 \quad 3 \sqrt{2}+2$
$4 \quad 3 \sqrt{2}-4$

Q.10 Bags $B_1, B_2, B_3$ contains 4 Blue, 6 white balls, 5 White 5 blue balls and 6 blue 4 white balls respectively. A bag is randomly selected and a ball is drawn. If the drawn ball is white then find the probability that $B_2$ bag was selected.

Q.11 $\begin{gathered}E=\left(\frac{\sqrt{3}}{2} i+\frac{1}{2} j\right) 30 \sin \left(\omega\left(t-\frac{z}{c}\right) j\right) \\ B=?\end{gathered}$

Q.12 If $x-(3-2 i) x-(2 i-2)=0$ has roots $\alpha+i \beta$ and $\gamma+i \delta$ find the value of $\alpha_y+\beta \delta$.

Q.13 Calculate the spin magnetic moment of $\mathrm{Mn}_2 \mathrm{O}_3$

Q.14 Which of the following compound(s) is/are yellow in colour?
(a) CdS, (b) PbS, (c) CuS, (d) ZnS (Cold), (e) $\mathrm{PbCrO}_4$

Choose the correct answer from the options given below:

Q.15 Consider the following oxides, $\mathrm{V}_2 \mathrm{O}_3, \mathrm{~V}_2 \mathrm{O}_4$, and $\mathrm{V}_2 \mathrm{O}_5$ Change in oxidation state of vanadium when amphoteric oxide reacts with acids to form $\mathrm{VO}_4$ is

1) 1

2) 2

3) 3

4) 4

Q.16 Find domain of $\sec { }^{\prime}(2[x]+1)$, where [.] denotes GIF.

Q.17 $\mathrm{CH}_3-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{H}_2]{\text { e } \mathrm{Pd} / \mathrm{C}}(\mathrm{A}) \xrightarrow[\text { (ii) } \mathrm{Zn}, \mathrm{H}_2 \mathrm{O}]{\text { (i) } \mathrm{O}_3}(\mathrm{~B})+(\mathrm{C})$

Q.18 212,213,..........., 999
find no. of numbers in the sequence above whose sum of digits is 15 .

Q.19 Q. The correct order of energy of the following subshell
$\quad$ 1s $2 s \quad 3 p \quad 3 d$
$1 \quad 1 s<2 s<3 d<3 p$
$2 \quad 2 s<1 s<3 p<3 d$
$3 \quad 1 s<3 p<2 s<3 d$
$4 \quad 1 s<2 s<3 p<3 d$

Q.20 Q. The magnetic field $\vec{B}$ at the centre $O$ of the given arrangement is
$1 \quad \frac{+\mu_0 I}{8 \pi a}(3 \pi+2) \hat{k}$
$2 \quad \frac{-\mu_0 I}{8 \pi a}(3 \pi+2) \hat{k}$
$3 \quad \frac{+\mu_0 I}{8 \pi a}(3 \pi-2) \hat{k}$
$4 \quad \frac{-\mu_0 I}{8 \pi a}(3 \pi-2) \hat{k}$

Q.21 Find area enclosed by $x\left(y^2+1\right)$ and $y^2=2 x$.

Q.22 If $f(x)=\int \frac{d x}{x^{1 / 4}\left(x^{1 / 4}+1\right)^4 d x \& f(0)=1 \text {. find } f(2)=\text { ? }}$

Q.23 which of the group -15 element forms $\mathrm{d} \pi-\mathrm{d} \pi$ Bond and strongest basic hydride ?
(1) $z=7$
(2) $z=15$
(3) $z=33$
(4) $z=51$

Q.24 Q. Area bounded between the curves $C_1: x\left(1+y^2\right)-1=0$ and $C_2: y^2-2 x=0$ is (in sq. unit)
$1 \quad \frac{\pi}{2}-\frac{1}{3}$
$2 \quad \frac{\pi}{4}-\frac{1}{6}$
$3 \quad 2\left(\frac{\pi}{2}-\frac{1}{6}\right)$
$4 \quad \frac{\pi}{6}+\frac{1}{2}$

ये भी पढ़ें:

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

जेईई मेन्स पिछले वर्षों के प्रश्न पत्र (JEE Mains Previous Years Question Paper)

पिछले वर्षों के प्रश्न पत्रों के साथ अपनी जेईई मेन की तैयारी में सुधार करें। पिछले वर्ष के वास्तविक परीक्षा प्रश्नों का अभ्यास करें, पैटर्न को समझें और सटीकता बढ़ाएं। अपने मजबूत विषयों तथा कमजोर विषयों की पहचान करने के लिए विषय-वार समाधान तक पहुँचें। आइए पिछले वर्षों के पेपर देखें:

Articles
|
Upcoming Engineering Exams
Ongoing Dates
HITSEEE Application Date

5 Nov'25 - 22 Apr'26 (Online)

Ongoing Dates
SMIT Online Test Application Date

15 Nov'25 - 12 Apr'26 (Online)

Ongoing Dates
SNUSAT Application Date

19 Nov'25 - 31 Mar'26 (Online)

Certifications By Top Providers
Computer Fundamentals
Via Devi Ahilya Vishwavidyalaya, Indore
Introduction to Biostatistics
Via Indian Institute of Technology Bombay
Certificate Program in Machine Learning and AI with Python
Via Indian Institute of Technology Bombay
Programming Basics
Via Indian Institute of Technology Bombay
C-Based VLSI Design
Via Indian Institute of Technology Guwahati
B.Tech Engineering Technology
Via Birla Institute of Technology and Science, Pilani
Udemy
 1525 courses
Swayam
 817 courses
NPTEL
 773 courses
Coursera
 697 courses
Edx
 608 courses
Explore Top Universities Across Globe

Questions related to JEE Main

On Question asked by student community

Have a question related to JEE Main ?

Hello there,

Understanding and solving different question papers is one of the best practices for preparation ,especially when it comes to JEE. It gives you a proper understanding of the exam pattern, important topics to cover, and the marking scheme.

Here is the link attached from the official website of Careers360 which will provide you with the question papers of JEE exam. Hope it helps!

https://engineering.careers360.com/articles/jee-main-question-papers

thank you!

Hello aspirant,

In order to prepare for the JEE Main 2026 exam, it is strongly advised that students complete the JEE Main 2025 Question Paper. This will help them comprehend the exam's difficulty level and question kinds. The JEE Main 2026 session 1 test will be administered by NTA from January 21 to 30, while the session 2 exam will take place from April 2 to 9.

To get the previous year question papers, you can visit our site through following link:

https://engineering.careers360.com/articles/jee-main-question-papers

Thank you

With a BC-E category certificate, EWS certificate, and Telangana home-state quota, your chances of getting admission to AIML or related CSE branches in CBIT, VNR VJIET, or similar top private colleges in Telangana depend mainly on your JEE Main percentile and the TS EAMCET counselling process, because these colleges fill seats through both TS EAMCET ranks and JEE Main scores (Category-B seats).

For Category-A seats (through TS EAMCET), JEE Main percentile is not considered. Admission is purely based on your TS EAMCET rank, reservation category, gender, and home-state status. CBIT and VNR are highly competitive, especially for AIML, CSE, and IT branches, so you generally need a very strong TS EAMCET rank (usually within a few thousand for BC-E candidates, sometimes slightly relaxed for girls).

For Category-B seats (JEE Main quota), JEE Main percentile matters. Based on recent trends, to have a realistic chance:

  • For CBIT (AIML / CSE / IT), a JEE Main percentile of around 95+ is usually expected, even for reserved categories, because Category-B seats are limited and competition is high.

  • For VNR VJIET (AIML / CSE / IT), candidates with 92–95 percentile sometimes have chances, depending on availability and the specific branch.

  • If your percentile is below 90, getting AIML or core CSE in CBIT or VNR becomes difficult, but you may still have chances in slightly lower-demand branches (like ECE, EEE, or emerging specialisations) or in other good private colleges affiliated with JNTU or autonomous institutions.

Your BC-E and EWS certificates do help mainly in TS EAMCET counselling (Category-A seats), not significantly in Category-B (JEE Main) admissions, where merit largely dominates. Home-state status is already assumed for these colleges, so there is no extra advantage beyond eligibility.

In summary, if your JEE Main percentile is 95 or above, you can reasonably target AIML/CSE in VNR and possibly CBIT through Category-B. If it is 90–94, VNR or related branches are more realistic than CBIT. Below that, it is better to focus on TS EAMCET performance or consider other reputed Telangana colleges offering AIML. If you want, you can share your exact JEE Main percentile and TS EAMCET rank, and I can give you a more precise college- and branch-wise estimate.

Hello,

JEE Mains is a national level entrance examination conducted for admission to UG engineering course in IITs, NITs, etc. This also is a qualifying test for JEE Advanced.

Practicing with previous year question paper will give you on overview of the entire exam pattern, marking scheme, types of questions asked, etc.

Check out the official website of Careers360 for the question papers, preparation tips, etc.

https://engineering.careers360.com/articles/jee-main-question-papers

Careers360 is also conducting a free JEE Mains mock test which you can attempt. The last date for registration is 8th January, 2026.

https://learn.careers360.com/test-series-jee-main-2026-free-mock-test/

Thank you.

Hello,

The link to the mock test series is attached here. The mock test of Careers360 is completely free, and the structure and questions were prepared keeping in mind the exam of JEE Mains. The registration is ongoing. the last date of registration on 8th January.

https://learn.careers360.com/test-series-jee-main-free-mock-test/

Thank you.