JEE Advanced Syllabus 2023 - Check Here
JEE Advanced Syllabus 2023 - Candidates who are going to appear in the JEE Advanced 2023 exam can now download the syllabus from this page. The authorities have released the JEE Advanced 2023 syllabus at jeeadv.ac.in.
Stay up-to date with JEE Advanced News
The authorities have notified that the revised IIT JEE Advanced syllabus 2023 will be used for preparing the JEE Advanced question paper. Students can download the IIT JEE Advanced syllabus pdf and start their preparation for the exam. The detailed JEE Advanced syllabus 2023 for all three subjects, Physics, Chemistry and Mathematics in downloadable pdf format is available here. Read the complete article to know more about the JEE Advanced syllabus 2023.
JEE Advanced Syllabus 2023 Pdf
JEE Advanced 2023 Syllabus for Physics
Unit | Topics |
General | General Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus - elasticity of the material Surface tension of water by capillary rise and effect of detergents. Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box. |
Mechanics | Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular motion; Relative velocity. Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy. Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions. Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies. Forced and damped oscillation (in one dimension), resonance. Linear and angular simple harmonic motions. Hooke’s law, Young’s modulus. Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Kepler’s law, Geostationary orbits, Motion of planets and satellites in circular orbits; Escape velocity. Pressure in a fluid; Pascal’s law;Buoyancy; Surface energy and surface tension, angle of contact, drops, bubbles and capillary rise. Viscosity (Poiseuille’s equation excluded), Modulus of rigidity and bulk modulus in mechanics. Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications. Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound) |
Thermal Physics | Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Second law of thermodynamics, reversible and irreversible processes, Carnot engine and its efficiency; Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law. |
Electricity and Magnetism | Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor. Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current. Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field. Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions. Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR, LC and LCR(in series) circuits with d.c. and a.c. sources. |
Electromagnetic Waves | Electromagnetic waves and their characteristics. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses. |
Optics | Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification. Wave nature of light: Huygen’s principle, interference limited to Young’s double slit experiment. Diffraction due to a single slit. Polarization of light, plane polarized light; Brewster's law, Polaroids. |
Modern Physics | Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes. Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves. |
JEE Advanced Syllabus 2023 for Chemistry
Unit | Topics |
General Topics | Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept and stoichiometry) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality. |
States of Matter: Gases and Liquids | Gas laws and ideal gas equation, absolute scale of temperature; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Diffusion of gases. Intermolecular interactions: types, distance dependence, and their effect on properties; Liquids: vapour pressure, surface tension, viscosity |
Atomic Structure | Bohr model, spectrum of hydrogen atom; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom: Energies, quantum numbers, wave function and probability density (plots only), shapes of s, p and d orbitals; Aufbau principle; Pauli’s exclusion principle and Hund’s rule. |
Chemical Bonding and Molecular Structure | Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Molecular orbital energy diagrams for homonuclear diatomic species (up to Ne2); Hydrogen bond; Polarity in molecules, dipole moment; VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral). |
Chemical Thermodynamics | Intensive and extensive properties, state functions, First law of thermodynamics; Internal energy, work (pressure-volume only) and heat; Enthalpy, heat capacity, standard state, Hess’s law; Enthalpy of reaction, fusion and vapourization, and lattice enthalpy; Second law of thermodynamics; Entropy; Gibbs energy; Criteria of equilibrium and spontaneity. |
Chemical and Ionic Equilibrium | Law of mass action; Significance of ȟܩ and ȟܩ ٓin chemical equilibrium; Equilibrium constant (Kp and Kc) and reaction quotient, Le Chatelier’s principle (effect of concentration, temperature and pressure); Solubility product and its applications, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts. |
Electrochemistry | Electrochemical cells and cell reactions; Standard electrode potentials; Electrochemical work, Nernst equation; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Batteries: Primary and Secondary, fuel cells; Corrosion. |
Chemical Kinetics | Rates of chemical reactions; Order and molecularity of reactions; Rate law, rate constant, half-life; Differential and integrated rate expressions for zero and first order reactions; Temperature dependence of rate constant (Arrhenius equation and activation energy); Catalysis: Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism. |
Solid State | Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic and hexagonal), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii and radius ratio, point defects. |
Solutions | Henry’s law; Raoult’s law; Ideal solutions; Colligative properties: lowering of vapour pressure, elevation of boiling point, depression of freezing point, and osmotic pressure; van’t Hoff factor. |
Surface Chemistry | Elementary concepts of adsorption: Physisorption and Chemisorption, Freundlich adsorption isotherm; Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples). |
Classification of Elements and Periodicity in Properties | Modern periodic law and the present form of periodic table; electronic configuration of elements; periodic trends in atomic radius, ionic radius, ionization enthalpy, electron gain enthalpy, valence, oxidation states, electronegativity, and chemical reactivity. |
Hydrogen | Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides – ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide-preparation, reactions, use and structure; hydrogen as a fuel. |
s-Block Elements | Alkali and alkaline earth metals-reactivity towards air, water, dihydrogen, halogens, acids; their reducing nature including solutions in liquid ammonia; uses of these elements; general characteristics of their oxides, hydroxides, halides, salts of oxoacids; anomalous behaviour of lithium and beryllium; preparation, properties, and uses of compounds of sodium (sodium carbonate, sodium chloride, sodium hydroxide, sodium hydrogen carbonate) and calcium (calcium oxide, calcium hydroxide, calcium carbonate, calcium sulphate). |
p-Block Elements | Oxidation state and trends in chemical reactivity of elements of groups 13-17; anomalous properties of boron, carbon, nitrogen, oxygen, and fluorine with respect to other elements in their respective groups. Group 13: Reactivity towards acids, alkalis, and halogens; preparation, properties, and uses of borax, orthoboric acid, diborane, boron trifluoride, aluminium chloride, and alums; uses of boron and aluminium. Group 14: Reactivity towards water and halogen; allotropes of carbon and uses of carbon; preparation, properties, and uses of carbon monoxide, carbon dioxide, silicon dioxide, silicones, silicates, zeolites. Group 15: Reactivity towards hydrogen, oxygen, and halogen; allotropes of phosphorous; preparation, properties, and uses of dinitrogen, ammonia, nitric acid, phosphine, phosphorus trichloride, phosphorus pentachloride; oxides of nitrogen and oxoacids of phosphorus. Group 16: Reactivity towards hydrogen, oxygen, and halogen; simple oxides; allotropes of sulfur; preparation/manufacture, properties, and uses of dioxygen, ozone, sulfur dioxide, sulfuric acid; oxoacids of sulfur. Group 17: Reactivity towards hydrogen, oxygen, and metals; preparation/manufacture, properties, and uses of chlorine, hydrogen chloride and interhalogen compounds; oxoacids of halogens, bleaching powder. Group 18: Chemical properties and uses; compounds of xenon with fluorine and oxygen. |
d-Block Elements | Oxidation states and their stability; standard electrode potentials; interstitial compounds; alloys; catalytic properties; applications; preparation, structure, and reactions of oxoanions of chromium and manganese. |
f-Block Elements | Lanthanoid and actinoid contractions; oxidation states; general characteristics. |
Coordination Compounds | Werner’s theory; Nomenclature, cis-trans and ionization isomerism, hybridization and geometries (linear, tetrahedral, square planar and octahedral) of mononuclear coordination compounds; Bonding [VBT and CFT (octahedral and tetrahedral fields)]; Magnetic properties (spin-only) and colour of 3d-series coordination compounds; Ligands and spectrochemical series; Stability; Importance and applications; Metal carbonyls. |
Isolation of Metals | Metal ores and their concentration; extraction of crude metal from concentrated ores: thermodynamic (iron, copper, zinc) and electrochemical (aluminium) principles of metallurgy; cyanide process (silver and gold); refining. |
Principles of Qualitative Analysis | Groups I to V (only Ag+ , Hg2+, Cu2+, Pb2+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), carbonate and bicarbonate, sulphate and sulphide. |
Environmental Chemistry | Atmospheric pollution; water pollution; soil pollution; industrial waste; strategies to control environmental pollution; green chemistry. |
Basic Principles of Organic Chemistry | Hybridisation of carbon; σ and π-bonds; Shapes of simple organic molecules; aromaticity; Structural and geometrical isomerism; Stereoisomers and stereochemical relationship (enantiomers, diastereomers, meso) of compounds containing only up to two asymmetric centres (R,S and E,Z configurations excluded); Determination of empirical and molecular formulae of simple compounds by combustion method only; IUPAC nomenclature of organic molecules (hydrocarbons, including simple cyclic hydrocarbons and their mono-functional and bi-functional derivatives only); Hydrogen bonding effects; Inductive, Resonance and Hyperconjugative effects; Acidity and basicity of organic compounds; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals. |
Alkanes | Homologous series; Physical properties (melting points, boiling points and density) and effect of branching on them; Conformations of ethane and butane (Newman projections only); Preparation from alkyl halides and aliphatic carboxylic acids; Reactions: combustion, halogenation (including allylic and benzylic halogenation) and oxidation. |
Alkenes and Alkynes | Physical properties (boiling points, density and dipole moments); Preparation by elimination reactions; Acid catalysed hydration (excluding the stereochemistry of addition and elimination); Metal acetylides; Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Electrophilic addition reactions of alkenes with X2, HX, HOX, (X=halogen); Effect of peroxide on addition reactions; cyclic polymerization reaction of alkynes. |
Phenols | Physical properties; Preparation, Electrophilic substitution reactions of phenol (halogenation, nitration, sulphonation); Reimer-Tiemann reaction, Kolbe reaction; Esterification; Etherification; Aspirin synthesis; Oxidation and reduction reactions of phenol. |
Alcohols | Physical properties; Reactions: esterification, dehydration (formation of alkenes and ethers); Reactions with: sodium, phosphorus halides, ZnCl2/concentrated HCl, thionyl chloride; Conversion of alcohols into aldehydes, ketones and carboxylic acids. |
Alkyl Halides | Rearrangement reactions of alkyl carbocation; Grignard reactions; Nucleophilic substitution reactions and their stereochemical aspects. |
Ethers | Preparation by Williamson’s synthesis; C-O bond cleavage reactions. |
Aldehydes and Ketones | Preparation of: aldehydes and ketones from acid chlorides and nitriles; aldehydes from esters; benzaldehyde from toluene and benzene; Reactions: oxidation, reduction, oxime and hydrazone formation; Aldol condensation, Cannizzaro reaction; Haloform reaction; Nucleophilic addition reaction with RMgX, NaHSO3, HCN, alcohol, amine. |
Carboxylic Acids | Physical properties; Preparation: from nitriles, Grignard reagents, hydrolysis of esters and amides; Preparation of benzoic acid from alkylbenzenes; Reactions: reduction, halogenation, formation of esters, acid chlorides and amides. |
Amines | Preparation from nitro compounds, nitriles and amides; Reactions: Hoffmann bromamide degradation, Gabriel phthalimide synthesis; Reaction with nitrous acid, Azo coupling reaction of diazonium salts of aromatic amines; Sandmeyer and related reactions of diazonium salts; Carbylamine reaction, Hinsberg test, Alkylation and acylation reactions. |
Haloarenes | Reactions: Fittig, Wurtz-Fittig; Nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding benzyne mechanism and cine substitution). |
Biomolecules | Carbohydrates: Classification; Mono- and di-saccharides (glucose and sucrose); Oxidation; Reduction; Glycoside formation and hydrolysis of disaccharides (sucrose, maltose, lactose); Anomers. Proteins: Amino acids; Peptide linkage; Structure of peptides (primary and secondary); Types of proteins (fibrous and globular). Nucleic acids: Chemical composition and structure of DNA and RNA. |
Polymers | Types of polymerization (addition, condensation); Homo and copolymers; Natural rubber; Cellulose; Nylon; Teflon; Bakelite; PVC; Bio-degradable polymers; Applications of polymers. |
Chemistry in Everyday Life | Drug-target interaction; Therapeutic action, and examples (excluding structures), of antacids, antihistamines, tranquilizers, analgesics, antimicrobials, and antifertility drugs; Artificial sweeteners (names only); Soaps, detergents, and cleansing action. |
Practical Organic Chemistry | Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro. |
JEE Advanced 2023 Syllabus for Mathematics
Units | Topics |
Sets, Relations and Functions | Sets and their representations, different kinds of sets (empty, finite and infinite), algebra of sets, intersection, complement, difference and symmetric difference of sets and their algebraic properties, De-Morgan’s laws on union, intersection, difference (for finite number of sets) and practical problems based on them. Cartesian product of finite sets, ordered pair, relations, domain and codomain of relations, equivalence relation Function as a special case of relation, functions as mappings, domain, codomain, range of functions, invertible functions, even and odd functions, into, onto and one-to-one functions, special functions (polynomial, trigonometric, exponential, logarithmic, power, absolute value, greatest integer etc.), sum, difference, product and composition of functions. |
Algebra | Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations. Statement of fundamental theorem of algebra, Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots. Arithmetic and geometric progressions, arithmetic and geometric means, sums of finite arithmetic and geometric progressions, infinite geometric series, sum of the first n natural numbers, sums of squares and cubes of the first n natural numbers. Logarithms and their properties, permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients. |
Matrices | Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, elementary row and column transformations, determinant of a square matrix of order up to three, adjoint of a matrix, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables. |
Probability and Statistics | Random experiment, sample space, different types of events (impossible, simple, compound), addition and multiplication rules of probability, conditional probability, independence of events, total probability, Bayes Theorem, computation of probability of events using permutations and combinations. Measure of central tendency and dispersion, mean, median, mode, mean deviation, standard deviation and variance of grouped and ungrouped data, analysis of the frequency distribution with same mean but different variance, random variable, mean and variance of the random variable. |
Trigonometry | Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations. Inverse trigonometric functions (principal value only) and their elementary properties. |
Analytical Geometry | Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin. Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle. Equation of a circle in various forms, equations of tangent, normal and chord. Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line. Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal. Locus problems. Three dimensions: Distance between two points, direction cosines and direction ratios, equation of a straight line in space, skew lines, shortest distance between two lines, equation of a plane, distance of a point from a plane, angle between two lines, angle between two planes, angle between a line and the plane, coplanar lines. |
Differential Calculus | Limit of a function at a real number, continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions. Continuity of composite functions, intermediate value property of continuous functions. Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions. Tangents and normals, increasing and decreasing functions, derivatives of order two, maximum and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem, geometric interpretation of the two theorems, derivatives up to order two of implicit functions, geometric interpretation of derivatives. |
Integral Calculus | Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals as the limit of sums, definite integral and their properties, fundamental theorem of integral calculus. Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas bounded by simple curves. Formation of ordinary differential equations, solution of homogeneous differential equations of first order and first degree, separation of variables method, linear first order differential equations. |
Vectors | Addition of vectors, scalar multiplication, dot and cross products, scalar and vector triple products, and their geometrical interpretations. |
Latest Articles
IIST B.Tech Rank List 2022 - Check Category Wise Merit List Here
IIST B.Tech Rank List 2022 - The Indian Institute of Space Sci...
IIST B.Tech Application Form 2022, Registration: Apply Online ...
The authorities will release the IIST BTech 2022 application f...
IIST B.Tech Cutoff 2022 - Check here (2021, 2020, 2019, 2018, ...
IIST B.Tech Cutoff 2022 - Indian Institute of Space Science an...
IIST B.Tech Admission 2022 - Application Form, Cutoff, Rank Li...
IIST B.Tech Admission 2022 - The Indian Institute of Space Sci...
JEE Advanced Mock Test 2022 - Free Test Series to Crack IIT Ex...
JEE Advanced Mock Test 2022 - The exam conducting authority ha...
Questions related to JEE Advanced
minimum marks required to crack JEE ADVANCED for General category and EWS also ?
Hello candidate,
There are various marking scheme for various category students to qualify the JEE advanced examination which are different for general, ews, as well as other reserved category candidates.
If you compare for the 2021 academic year, the qualifying marks for general category students was around 80 whereas for the EWS category qualifying marks was around 75. Moreover we have also to qualify in individual subjects in order to crack this examination.
Hope you found it helpful!
is physics wallah better than vidyamandir classes? if my 11 is wasted will you suggest me to join any coaching institute but i am poor student ,is physics wallah is better choice to crack iit jee 2023 if my 11 is wasted i want to join physics wallah lakshay batch does it sufficient for cracking iit
Dear aspirant !
Hope you are doing well! Yes of course ,don't you know the result of physics wallah ,in india from my view physics wallah has become best Channel in a very and very low budget ,while other Youtubers selling their course at a very high price ,on the other hand physics wallah provide quality content which of course in a very low budget ,even a boy from any corner of India can afford it ,before 2 or 3 years no one knew who was physics wallah but now it is brand ,no doubt , believe me you will definitely crack jee of 2023 if you follow their content ,and given best from your side as well ,no need to join any coaching if you follow them ,just blindly follow them,you can see previous result of jee advanced of them ,they are incredible ,also purchase it as soon as possible , don't miss your lecture ,and yes one more information that please don't create any backlogs ,make your doubt clear regularly ,solve the dpp provided by them ,also attempt mock test and solve previous year paper !
Hope it helps you!!
Feel free to ask further any query!
Thanking you
how can i get a decent rank in jee advanced if i am strating form now.
Hello,
For JEE Advance you need to give some valuable time for preparation if you want to score well. It depends on the pandemic situation, as the exam may get postponed.
Some tips for you
Prepare A Well-laid Plan based on daily schedule.
Get Hold Of the Syllabus.
Time Management is necessary
Clear Basic Concepts.
Choose The Right Study Material.
Solve JEE Advanced question papers and revise them thoroughly
Prepare Methods Of Learning smartly
FAQ in JEE Advanced is important.
Mocktest
You should not leave any of the chapters untouched.
Click on the link for details
https://engineering.careers360.com/exams/jee-advanced
You need to secure minimum 75% aggregate marks . For the SC/ST/PwD category, aggregate marks is minimum 65%.
Thanks
who can give jee advanced 2022
Hey!
The JEE Advanced 2022 eligibility criteria will be published on the official website of IIT Bombay. To take the JEE Advanced 2022, candidates must fulfil the qualifying criteria's conditions and prerequisites. Candidates who applied for JEE Advanced 2020/2021 but did not sit for the test are allowed to register for JEE Advanced 2022, according to the authorities.
Last year, the Education Minister stated that the JEE Advanced qualifying condition of a minimum of 75% in class 12 will be waived. Candidates pursuing admittance to IITs through JEE Advanced must meet a number of requirements, including a qualifying test, requisite marks, and more. Candidates will be rejected if they do not meet the JEE Advanced 2022 eligibility criterion. It's worth noting that only JEE Main qualified candidates will be eligible for JEE Advanced 2022.
Eligibility Criteria:
- Candidates must have cleared the JEE Main 2022 exam (Paper 1). In addition, they must be in the top 2,50,000 applicants. The categories will be divided as the following:
GEN-EWS - 10%
OBC-NCL - 27%
SC - 15%
ST - 7.5%
OPEN - 40.5%
PwD - 5% horizontal reservation in all of the above.
- Candidates for JEE Advanced 2022 must have been born on or after October 1, 1997. SC, ST, and PWD applicants, on the other hand, would be given a 5-year exemption (born on or after October 1, 1992).
- The maximum number of times a candidate can try JEE Advanced in two consecutive years is two. Applicants who filled out the JEE Advanced 2022/2021 application form but did not take the test can sit for the JEE Advanced 2022 exam, according to the IITB.
- All applicants must have passed the 10+2 test for the first time in 2021 or 2022. If the result for the academic year 2019-20 is announced after June 2020, then candidates from that board who took their 12th standard qualifying test in 2020 will also be considered eligible for JEE Advanced 2022, if they fulfil the other eligibility conditions.
For further information, check out the link provided below.
https://engineering.careers360.com/articles/jee-advanced-eligibility-criteria
Hope it helps!
which coaching institute is best for jee mains and jee advanced in Nagpur
Hello!
Please look at the names I am mentioning below for best coaching institute for JEE;
1. Toppers Academy
2. The Hindi Zone academy
3. IIT JEE Rankers coaching
4. Gyanaj.com (//Gyanaj.com)
5. Allen career institute
6. Resonance IIT JEE coaching