UPES B.Tech Admissions 2026
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
Newton's Law Of Cooling - Isaac Newton developed Newton's Law of Cooling in 1701. He noticed that the rate of heat loss (change in temperature) of a body is directly proportional to the temperature difference between the body and its surroundings. Newton was the first scientist who analysed the relationship between the rate of heat loss from a body in a certain enclosure and its surface area exposed. He was primarily focused on heat transfer by radiation.
Based on the registration trends from previous years, the JEE Main 2026 registration process is expected to begin in October, with the first session likely in January and the second session in April. The JEE Main previous years registration trend is given in the table below.
Exam Year | Registration start date |
2025 | October 28, 2024 |
2024 | November 1, 2023 |
2023 | December 15, 2022 |
2022 | March 1, 2022 |
2021 | December 16, 2020 |
This law defines the rate at which a body changes its temperature by radiation, which is almost equal to the temperature difference between the body itself and its surroundings. Keep in mind that the temperature difference over here is very small. Initially the law was not agreed upon in its present form. The present form of the Law Of Cooling was created, after the confusion between the concepts of heat and temperature, much after 1701.
In simpler terms, Newton’s Law of Cooling states that the rate of loss of heat from a body is directly proportional to the temperature difference of the body and its surroundings.
Newton’s Law of Cooling is represented by:
– dQ/dt ∝ (Tt – Ts)
– dQ/dt = k (Tt – Ts) …………………(1)
Where,
Tt = Body (Object) temperature at time t
Ts = temperature of the surrounding,
k = Constant (Positive) that depends on the nature of the surface of the object and the area of the object and under consideration.
The Newton's laws of cooling can be represented by the following formula-
T(t) = Ts + (Tt - Ts ) e-kt
Where,
T(t) = Temperature at time t
Ts = Temp of surroundings (Ambient temperature)
Tt = Initial temperature of the hot object (body)
k = positive constant and
t = time
Let a body of mass m, specific heat capacity s, at temperature Tt and surrounding temperature Ts. If the change in temperature is dTt in time dt, then the amount of heat lost is given by,
dQ = m*s dTt
The rate of heat loss is given by,
dQ/dt = ms (dTt/dt) ……………………………… (2)
Compare the equations (1) and (2) as,
– ms (dTt/dt) = k (Tt – Ts)
After Rearrange the above equation
dTt/(Tt–Ts) = – (k /ms) dt
dTt /(Tt – Ts) = – Kdt
After integrating the above expression,
loge (Tt – Ts) = – K t + c
or
Tt = Ts + C’ e–Kt
where C’ = ec
In general, T(t) = Ts + (Tt - Ts ) e-kt
The temperature difference between the environment and the body must be very small.
For the loss of heat from the body only radiation should be used.
During the cooling of the object or body the temperature of the surroundings must remain constant (This is the key constraint of Newton’s law of cooling).
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
Campuses in Ropar, Agartala, Aizawl, Ajmer, Aurangabad, Calicut, Imphal, Itanagar, Kohima, Gorakhpur, Patna & Srinagar
It helps to identify the time of death by determining the temperature difference at the time of death and the current body temperature.
To estimate how much time it will take a warm object to cool down at a specific temperature.
To determine the temperature of an object or drink in a refrigerator after some time has been passed.
It is also helpful to determine the temperature of the water heater. And how it cools down.
For low temperature, Newton's laws of cooling is used in determining the ambient conditions for nuclear reaction.
Q-1 (JEE Main 2022)
In an experiment to verify Newton's law of cooling, a graph is plotted between the temperature difference of the water and surroundings and time as shown in figure. The initial temperature of water is taken as
. The value of
, as mentioned in the graph will be______.
Solution:
Rate of cooling:
$$
R=\frac{-\Delta T}{\Delta t}
$$
At $\mathrm{t}=0=\mathrm{k}\left(\mathrm{T}_{\mathrm{avg}}-\mathrm{T}_0\right)$
$\mathrm{T}_1=80^{\circ} \mathrm{C}=$ Temperature of water
$T_1-T_{\text {surrounding }}=60$
$T_0=T_{\text {surrounding }}=20^{\circ} \mathrm{C}$
At $t=6 \mathrm{~s}$
$T_{\text {temperature of water }}^t=T_2$
$T_2-T_{\text {surrounding }}=40$
$T_2=60$
At time $=t_2$
Temperature of water $=T_3$
$T_3-T_{\text {sur rounding }}=20$
$T_3=40^{\circ} \mathrm{C}$
from $t=0$ to $t=6 \mathrm{~s}$
$-\frac{\Delta T}{\Delta t}=-\frac{\left(T_2-T_1\right)}{\Delta t}=K\left(\frac{T_1+T_2}{2}-T_0\right)$
$\frac{20}{6}=K(70-20)$
$k=\frac{1}{15} \rightarrow(1)$
$$
\begin{aligned}
& \text { From } t=0 \text { to } t=t_2 \\
& \begin{aligned}
-\frac{\Delta t}{\Delta t} & =\frac{-\left(t_3-t_2\right)}{2+\left(t_2-0\right)}=k\left(\frac{t_2+T_3}{2}-T_0\right) \\
\frac{20}{t_2} & =\left(\frac{1}{15}\right) \\
t_2 & =10 \mathrm{~min}
\end{aligned}
\end{aligned}
$$
Q-2 (JEE Main 2021)
A body takes 4 min to cool from 61 degree Celsius to 59 degree Celsius. If the temperature of the surroundings is 30 degree Celsius the time taken by the body to cool from 51 degree Celsius to 49 degree Celsius is:
Solution:
By Newton's law of cooling ,
$\begin{aligned} & \frac{-\Delta T}{\Delta t}=K\left(T_{a v g}-T_0\right) \\ & \left(\frac{61-59}{4}\right)=\left(\frac{2}{4}\right)=k\left(\frac{61+59}{2}-30\right) \rightarrow(1) \\ & \frac{(51-49)}{t}=\frac{2}{t}=k\left(\frac{51+49}{2}-30\right) \rightarrow(2) \\ & \frac{2 / 4}{2 / t}=\frac{k(60-30)}{k(50-30)} \\ & \frac{t}{4}=\frac{30}{20} \\ & t=6 \mathrm{~min}\end{aligned}$
Hence it will take 6 min to cool down from 51 degree Celsius to 49 degree Celsius.
Q-3 (JEE Main 2020)
\text { A metallic sphere cools from } 50^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \text { in } 300 \mathrm{~s} \text {. If atmospheric temperature around is } 20^{\circ} \mathrm{C} \text {. then the sphere's temperature after the next } 5 \text { minutes will be close to: }
Solution:
$$
\text { As } \frac{\Delta T}{\Delta t}=k\left[\frac{T_f+T_i}{2}-T_0\right]
$$
From question
$$
\begin{aligned}
& \frac{50-40}{3(00}=k\left[\frac{90}{2}-20\right] \ldots(1 \\
& \frac{40-T}{3000}=k\left[\frac{40+T}{2}-20\right] \ldots
\end{aligned}
$$
Taking ratio of equation (1) and(2) we get
$$
\begin{aligned}
& \frac{10}{40-T}=\left[\frac{50}{40+T-40}\right] \\
& \mathrm{T}=200-5 \mathrm{~T} \\
& 6 \mathrm{~T}=200 \\
& \Rightarrow \mathrm{~T}=33^0 \mathrm{C}
\end{aligned}
$$
This topic is from NCERT class 11 chapter Heat and Thermodynamics. Following are some practice questions based on the concept Newton's laws of cooling from NCERT class 11.
Q-1: A pan filled with hot food cools from 94 °C to 86 °C in 2 minutes when the room temperature is at 20 °C. How long will it take to cool from 71 °C to 69 °C?
Solution:
Given That food cools from 94 °C to 86 °C in 2 minutes.
We can calculate an average temperature of 94 °C and 86 ° C. That is 90 °C. The food cools down 8°C in two minutes. Change in temperature from room temperature 20 °C is 70 °C
Change in temperature/Time = K ∆T
8/2 = K(70).........(1)
We want to calculate the time taken for food to cool down 71 °C to 69 °C.
Average temperature of 71 °C to 69 °C is 70°C
The temperature difference between room temperature 20°C and 70 is 50°C
∆T = 50°C
Using the formula
Change in temperature/Time = K ∆T
Change in temperature from 71 °C to 69 °C is equal to 2 °C and let's consider the time taken to cool down.
2/t = K (50) …………(2)
Using equation (1) and (2)
(8/2)/(2/t) = 70/50
t= 7/10 = 0.7 min or 42 second
Hence food cools down form 71 °C to 69 °C in 42 seconds
Q-2: A body cools from 80 °C to 50 °C in 5 minutes. Calculate the time it takes to cool from 60 °C to 30 °C. The temperature of the surroundings is 20 °C.
Solution:
Given That a body cools down 80 °C to 50 °C in 5 minutes and surrounding temperature = 20 °C
We want to find out the time taken by the body to cool down from 60 °C to 30 °C.
We know that here we can apply newton's law of cooling and we can use formula
Change in temperature/Time = K ∆T
For first case change in average temperature for 80 °C and 50 °C = 65 °C
The difference between 65°C and surrounding temperature 20°C is 45°C.
It cools down 30°C in 5 min
Therefore
30/5 = K (45) ……….(1)
For second case
Average temperature of 60 °C to 30 °C is 45°C.
The temperature difference between 45°C and surrounding temperature 20°C is 25°C.
Body cools down 30°C in lets take T minutes.
Using the formula
Change in temperature/Time = K ∆T
30/T = K (25) ………..(2)
Using equation (1) and (2)
T/5 = 45/25
T = 9 min
Hence, body will take 9 min to cools down from 60 °C to 30 °C
Newton's Law of Cooling provides important insights as it is used in fields like forensic science hence, it becomes important from exam point of view as well. To solve most of the questions from these topics, understanding of the basic concepts is required.
On Question asked by student community
Hello,
JEE has two exams:
The percentage or marks needed to get seat in NITs and IITs are:
Go through the link for more details:
https://engineering.careers360.com/articles/jee-main-cutoff
I hope this answer helps you, All the best!
Heya,
Yes, you can refill your category again. In the case of the April session JEE Main registration, you have the option to change your category while registering your details only once. You can switch from General to EWS if you have a proper certificate. Just be certain that the EWS certificate is granted before the last date of the April session form and complies with the NTA's requirements of validity.
Hope it helps!!!
Hello,
You can certainly get admission at DTU (Delhi Technological University) as the minimum requirement there is 60% aggregate in PCM. In such a case, you will be given admission to the top branches of CSE/ECE. Nevertheless, the case is totally different for IIT Hyderabad.
Admission into IITs is through JEE Advanced, and they require either a minimum of 75% in boards or to be in the top 20th percentile of the board for eligibility. But, if you fail to get 75% and happen to not be in the top 20th percentile, you can't get admission at IIT even if you have a good rank in JEE Mains.
Hope it helps!!!
Hello Tanishka,
Although i believe your attempting strategy and sequence depends entirely on your stage of preparation and your personal progress, i would suggest you sit for your January attempt even if you aim to seriously prepare for April.
Whatever stage of syllabus completion you are at, i suggest you give it a try to get an estimate of the exam difficulty and see roughly where you stand among the applicants that year. No matter how many mock tests you attempt, the actual examination environment happens to be very different from mock tests. The first attempt is going to give you an idea of the exam environment so you can prepare for your April attempt better.
All the best for your exams!
Hello Swati
Yes, your EWS certificate will be valid for JEE Main 2026 and counselling if it’s issued after April 1, 2025.
This is because EWS certificates are valid for one financial year from April to March.
So, a certificate made in October 2025 will be for FY 2025–26, which covers both JEE and counselling. You’ll need the certificate number during JEE registration in October 2025.
Even if you don’t have it yet, you can still register and upload it later during counselling. Just make sure the certificate clearly mentions the correct financial year.
Always keep a few extra copies and the original ready for verification.
You're good to go if it’s issued after April 1, 2025
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
AICTE ‘Platinum’ institute | NIRF 2024 Rank Band 151-200 under the engineering category | Tier-1 accreditation by NBA | Merit & Sports Scholarships
Dive into everything you need to know about IITs—from eligibility and cutoffs to fees and placements.
Ranked #5 among Top Emerging Engineering Institutes | Key Recruiters : Amazon, Accenture, KPMG, EY, Capgemini etc
NAAC A+ Grade | Among top 100 universities of India (NIRF 2024) | 40 crore+ scholarships distributed
Hands on Mentoring and Code Coaching | Cutting Edge Curriculum with Real World Application