Amrita University B.Tech 2026
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
Newton's Law Of Cooling - Isaac Newton developed Newton's Law of Cooling in 1701. He noticed that the rate of heat loss (change in temperature) of a body is directly proportional to the temperature difference between the body and its surroundings. Newton was the first scientist who analysed the relationship between the rate of heat loss from a body in a certain enclosure and its surface area exposed. He was primarily focused on heat transfer by radiation.
This law defines the rate at which a body changes its temperature by radiation, which is almost equal to the temperature difference between the body itself and its surroundings. Keep in mind that the temperature difference over here is very small. Initially the law was not agreed upon in its present form. The present form of the Law Of Cooling was created, after the confusion between the concepts of heat and temperature, much after 1701.
In simpler terms, Newton’s Law of Cooling states that the rate of loss of heat from a body is directly proportional to the temperature difference of the body and its surroundings.
Newton’s Law of Cooling is represented by:
– dQ/dt ∝ (Tt – Ts)
– dQ/dt = k (Tt – Ts) …………………(1)
Where,
Tt = Body (Object) temperature at time t
Ts = temperature of the surrounding,
k = Constant (Positive) that depends on the nature of the surface of the object and the area of the object and under consideration.
The Newton's laws of cooling can be represented by the following formula-
T(t) = Ts + (Tt - Ts ) e-kt
Where,
T(t) = Temperature at time t
Ts = Temp of surroundings (Ambient temperature)
Tt = Initial temperature of the hot object (body)
k = positive constant and
t = time
Let a body of mass m, specific heat capacity s, at temperature Tt and surrounding temperature Ts. If the change in temperature is dTt in time dt, then the amount of heat lost is given by,
dQ = m*s dTt
The rate of heat loss is given by,
dQ/dt = ms (dTt/dt) ……………………………… (2)
Compare the equations (1) and (2) as,
– ms (dTt/dt) = k (Tt – Ts)
After Rearrange the above equation
dTt/(Tt–Ts) = – (k /ms) dt
dTt /(Tt – Ts) = – Kdt
After integrating the above expression,
loge (Tt – Ts) = – K t + c
or
Tt = Ts + C’ e–Kt
where C’ = ec
In general, T(t) = Ts + (Tt - Ts ) e-kt
The temperature difference between the environment and the body must be very small.
For the loss of heat from the body only radiation should be used.
During the cooling of the object or body the temperature of the surroundings must remain constant (This is the key constraint of Newton’s law of cooling).
It helps to identify the time of death by determining the temperature difference at the time of death and the current body temperature.
To estimate how much time it will take a warm object to cool down at a specific temperature.
To determine the temperature of an object or drink in a refrigerator after some time has been passed.
It is also helpful to determine the temperature of the water heater. And how it cools down.
For low temperature, Newton's laws of cooling is used in determining the ambient conditions for nuclear reaction.
Q-1 (JEE Main 2022)
In an experiment to verify Newton's law of cooling, a graph is plotted between the temperature difference
of the water and surroundings and time as shown in figure. The initial temperature of water is taken as
. The value of
, as mentioned in the graph will be______.

Solution:
Rate of cooling:
$$
R=\frac{-\Delta T}{\Delta t}
$$
At $\mathrm{t}=0=\mathrm{k}\left(\mathrm{T}_{\mathrm{avg}}-\mathrm{T}_0\right)$
$\mathrm{T}_1=80^{\circ} \mathrm{C}=$ Temperature of water
$T_1-T_{\text {surrounding }}=60$
$T_0=T_{\text {surrounding }}=20^{\circ} \mathrm{C}$
At $t=6 \mathrm{~s}$
$T_{\text {temperature of water }}^t=T_2$
$T_2-T_{\text {surrounding }}=40$
$T_2=60$
At time $=t_2$
Temperature of water $=T_3$
$T_3-T_{\text {sur rounding }}=20$
$T_3=40^{\circ} \mathrm{C}$
from $t=0$ to $t=6 \mathrm{~s}$
$-\frac{\Delta T}{\Delta t}=-\frac{\left(T_2-T_1\right)}{\Delta t}=K\left(\frac{T_1+T_2}{2}-T_0\right)$
$\frac{20}{6}=K(70-20)$
$k=\frac{1}{15} \rightarrow(1)$
$$
\begin{aligned}
& \text { From } t=0 \text { to } t=t_2 \\
& \begin{aligned}
-\frac{\Delta t}{\Delta t} & =\frac{-\left(t_3-t_2\right)}{2+\left(t_2-0\right)}=k\left(\frac{t_2+T_3}{2}-T_0\right) \\
\frac{20}{t_2} & =\left(\frac{1}{15}\right) \\
t_2 & =10 \mathrm{~min}
\end{aligned}
\end{aligned}
$$
Q-2 (JEE Main 2021)
A body takes 4 min to cool from 61 degree Celsius to 59 degree Celsius. If the temperature of the surroundings is 30 degree Celsius the time taken by the body to cool from 51 degree Celsius to 49 degree Celsius is:
Solution:
By Newton's law of cooling ,
$\begin{aligned} & \frac{-\Delta T}{\Delta t}=K\left(T_{a v g}-T_0\right) \\ & \left(\frac{61-59}{4}\right)=\left(\frac{2}{4}\right)=k\left(\frac{61+59}{2}-30\right) \rightarrow(1) \\ & \frac{(51-49)}{t}=\frac{2}{t}=k\left(\frac{51+49}{2}-30\right) \rightarrow(2) \\ & \frac{2 / 4}{2 / t}=\frac{k(60-30)}{k(50-30)} \\ & \frac{t}{4}=\frac{30}{20} \\ & t=6 \mathrm{~min}\end{aligned}$
Hence it will take 6 min to cool down from 51 degree Celsius to 49 degree Celsius.
Q-3 (JEE Main 2020)
\text { A metallic sphere cools from } 50^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \text { in } 300 \mathrm{~s} \text {. If atmospheric temperature around is } 20^{\circ} \mathrm{C} \text {. then the sphere's temperature after the next } 5 \text { minutes will be close to: }
Solution:
$$
\text { As } \frac{\Delta T}{\Delta t}=k\left[\frac{T_f+T_i}{2}-T_0\right]
$$
From question
$$
\begin{aligned}
& \frac{50-40}{3(00}=k\left[\frac{90}{2}-20\right] \ldots(1 \\
& \frac{40-T}{3000}=k\left[\frac{40+T}{2}-20\right] \ldots
\end{aligned}
$$
Taking ratio of equation (1) and(2) we get
$$
\begin{aligned}
& \frac{10}{40-T}=\left[\frac{50}{40+T-40}\right] \\
& \mathrm{T}=200-5 \mathrm{~T} \\
& 6 \mathrm{~T}=200 \\
& \Rightarrow \mathrm{~T}=33^0 \mathrm{C}
\end{aligned}
$$
This topic is from NCERT class 11 chapter Heat and Thermodynamics. Following are some practice questions based on the concept Newton's laws of cooling from NCERT class 11.
Q-1: A pan filled with hot food cools from 94 °C to 86 °C in 2 minutes when the room temperature is at 20 °C. How long will it take to cool from 71 °C to 69 °C?
Solution:
Given That food cools from 94 °C to 86 °C in 2 minutes.
We can calculate an average temperature of 94 °C and 86 ° C. That is 90 °C. The food cools down 8°C in two minutes. Change in temperature from room temperature 20 °C is 70 °C
Change in temperature/Time = K ∆T
8/2 = K(70).........(1)
We want to calculate the time taken for food to cool down 71 °C to 69 °C.
Average temperature of 71 °C to 69 °C is 70°C
The temperature difference between room temperature 20°C and 70 is 50°C
∆T = 50°C
Using the formula
Change in temperature/Time = K ∆T
Change in temperature from 71 °C to 69 °C is equal to 2 °C and let's consider the time taken to cool down.
2/t = K (50) …………(2)
Using equation (1) and (2)
(8/2)/(2/t) = 70/50
t= 7/10 = 0.7 min or 42 second
Hence food cools down form 71 °C to 69 °C in 42 seconds
Q-2: A body cools from 80 °C to 50 °C in 5 minutes. Calculate the time it takes to cool from 60 °C to 30 °C. The temperature of the surroundings is 20 °C.
Solution:
Given That a body cools down 80 °C to 50 °C in 5 minutes and surrounding temperature = 20 °C
We want to find out the time taken by the body to cool down from 60 °C to 30 °C.
We know that here we can apply newton's law of cooling and we can use formula
Change in temperature/Time = K ∆T
For first case change in average temperature for 80 °C and 50 °C = 65 °C
The difference between 65°C and surrounding temperature 20°C is 45°C.
It cools down 30°C in 5 min
Therefore
30/5 = K (45) ……….(1)
For second case
Average temperature of 60 °C to 30 °C is 45°C.
The temperature difference between 45°C and surrounding temperature 20°C is 25°C.
Body cools down 30°C in lets take T minutes.
Using the formula
Change in temperature/Time = K ∆T
30/T = K (25) ………..(2)
Using equation (1) and (2)
T/5 = 45/25
T = 9 min
Hence, body will take 9 min to cools down from 60 °C to 30 °C
Newton's Law of Cooling provides important insights as it is used in fields like forensic science hence, it becomes important from exam point of view as well. To solve most of the questions from these topics, understanding of the basic concepts is required.
On Question asked by student community
Hello Suhana
If you want to prepare for the JEE Mains exam 2026, then you need to manage your study time and try to give very much attention to your studies. JEE Mains is an entrance exam which is conducted by NTA(National Test Agency), and only science stream students give this exam to get admission in top engineering colleges to get admission in B.Tech or B.E courses.
Students give this exam after completing or appearing in the 12th class. This entrance exam is conducted at the undergraduate level. After clearing the JEE Mains exam, you become eligible to give the JEE Advanced, which helps to get admission in top IIT & NIT colleges of our country.
Here are some tips which help you at the time of your preparation-
I hope this information he;lps you. You also do your preparation on our official website, careers360.
All the best for your exam.
Hello,
Yes, you are eligible to attempt JEE Main 2026, as eligibility is based on appearing for or passing the class 12 exam in 2024, 2025, or 2026. Since you passed Class 12 in 2024, you are within the eligibility window to appear in 2026. Here in this article you will find more about the JEE Main eligibility criteria.
I hope it will clear your query!!
Hello,
If you have already passed Class 12 earlier and you are only taking the improvement exam in 2026, then you must choose “Passed” in the JEE Main 2026 form .
JEE Main always considers the first year in which you passed Class 12 as your official passing year. Improvement does not change that. So your status is not “appeared” and not “appearing.” It stays “Passed.”
You should enter:
Pass Status: Passed
Year of Passing: Your original Class 12 pass year
Marks: Your original marks (you can update later only if NTA allows it)
If you are giving Class 12 for the first time in 2026, then you must choose “Appearing.”
This is the correct and safe option for your JEE Main 2026 registration .
Hope it helps !
Hi Hriday
If your father's name is different on your Aadhar card and 10th marksheet, you need to change your father's name in the Aadhar card and match it with the spelling of the 10th marksheet, because when you take admission in college through JEE Mains score. They match your name, your father's name, and your mother's name with your 10th class marksheet, which serves as a real identity for document verification.
What college typically accepts-
I hope you will understand my point. These are some major issues which many students face during the time of admission in college.
Thank you.
Hello,
Yes, you can apply for JEE Main even if you do not have a caste certificate right now.
You only need the caste certificate if you want to claim a reserved category (SC/ST/OBC/EWS).
If you do not have it at the time of filling the form, you can apply as
General
or
General-EWS/OBC-NCL without certificate
, and later you can upload the valid certificate during counselling or document verification.
So yes, you can fill the JEE Main form without a caste certificate.
Hope it helps !
Among Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
60+ Years of Education Legacy | UGC & AICTE Approved | Scholarship Worth 6 Crores | H-CTC 35 LPA
India's Largest University | NAAC A++ | 100% Placements Record | Highest CTC 2.5 Cr PA | 150 + Programmes across Multiple Disciplines
NAAC A++ Grade | Recognized as Category-1 Deemed to be University by UGC | 41,000 + Alumni Imprints Globally