Getting above 90 in Physics through JEE Main is not about solving thousands of problems, but mastering the right questions. Analyzing JEE Main Physics PYQs for the last 15 years gives away a repeated and narrow set of choices of concepts and the pattern of questions. This article will bring out the Top 20 Repeated JEE Mains Questions to Score 90+ in Physics over the years. Solving these repeated questions of JEE Main Physics can help aspirants highly improve in accuracy, speed, and confidence to achieve that mark without much stress.
Also Check: JEE Main Last Minute Preparation TIps
The National Testing Agency (NTA) will issue the JEE Mains 2026 admit card for session 1 exams soon on its official website at jeemain.nta.nic.in.
JEE Main Physics can be done really well if you keep studying such chapters that have consistently carried high weightage in past years and repeated PYQ patterns, and you can score above 90. The table below shows the most scoring Physics chapters for Physics PYQs to score 90+ in JEE Main, expected question frequency, and scoring potential.
|
Chapter Name |
Percentage Distribution |
|
Optics |
7.54% |
|
Properties of Solids and Liquids |
7.01% |
|
Electrostatics |
7.41% |
|
Current Electricity |
6.85% |
|
Electromagnetic Induction and Alternating Currents |
6.23% |
|
Concept Name |
Total Number of Questions from last five years |
|
De-broglie wavelength of an electron |
38 |
|
Logic Gates |
36 |
|
Parallel Grouping of Resistance |
33 |
|
Projectile Motion |
33 |
|
Amplitude Modulation |
32 |
The questions are based on highly repeated concepts in the previous few years, concepts that appear almost every year in JEE Main Physics with maximum scoring potential if prepared well.
Question 1: A particle is projected at an angle of $30^{\circ}$ from horizontal at a speed of $60 \mathrm{~m} / \mathrm{s}$. The height traversed by the particle in the first second is $h_0$ and height traversed in the last second, before it reaches the maximum height, is $h_1$. Then $h_0: h_1$ is________.
$\left[\right.$ Take, $\left.g=10 \mathrm{~m} / \mathrm{s}^2\right]$
Solution:
Given Data:
Initial velocity: $u=60 \mathrm{~m} / \mathrm{s}$
Angle of projection: $\theta=30^{\circ}$
Acceleration due to gravity: $g=10 \mathrm{~m} / \mathrm{s}^2$
We need to find the ratio of:
Height traversed in the first second $\left(h_0\right)$
Height traversed in the last second before reaching maximum height $\left(h_1\right)$
Step 1: Find the Vertical Component of Velocity
The initial vertical velocity:
$
u_y=u \sin 30^{\circ}=60 \times \frac{1}{2}=30 \mathrm{~m} / \mathrm{s}
$
Step 2: Find the Time to Reach Maximum Height
At the maximum height, the vertical velocity becomes zero:
$
\begin{aligned}
& v_y=u_y-g t \\
& 0=30-10 t \\
& t=\frac{30}{10}=3 \mathrm{~s}
\end{aligned}
$
So, the total time to reach maximum height is 3 seconds.
Step 3: Height Traversed in the First Second $\left(h_0\right)$
Using the equation of motion:
$
h_0=u_y t+\frac{1}{2} a_y t^2
$
For $t=1 \mathrm{~s}$ :
$
h_0=(30 \times 1)+\frac{1}{2}\left(-10 \times 1^2\right)
$
$
h_0=30-5=25 \mathrm{~m}
$
Step 4: Height Traversed in the Last Second $\left(h_1\right)$
The height traversed in the last second before reaching maximum height is given by:
$
h_1=v_y t-\frac{1}{2} a_y t^2
$
$
\mathrm{h}_1=0-\frac{1}{2}\left(-10 \times 1^2\right)=5 \mathrm{~m}
$
Step 5: Find the Ratio $h_0: h_1$
$
h_0: h_1=25: 5=5: 1
$
Hence, the answer is 5.
Question 2: The angle of projection for a projectile to have same horizontal range and maximum height is :
1) $\tan ^{-1}(2)$
2) (correct) $\tan ^{-1}(4)$
3) $\tan ^{-1}\left(\frac{1}{4}\right)$
4) $\tan ^{-1}\left(\frac{1}{2}\right)$
Solution:
$\mathrm{\begin{aligned} & \frac{u^2 \sin 2 \theta}{g}=\frac{u^2 \sin ^2 \theta}{2 g} \\ & 4 \sin \theta \cos \theta=\sin ^2 \theta \\ & 4=\tan \theta\end{aligned}}$
$\theta=\tan ^{-1}(4)$
Hence, the answer is the option (2).
Question 3: The maximum height reached by a projectile is 64 m. If the initial velocity is halved, the new maximum height of the projectile is ______ m.
Solution:
$ \mathrm{H}_{\max }=\frac{\mathrm{u}^2 \sin ^2 \theta}{2 \mathrm{~g}} \\ $
$ \frac{\mathrm{H}_{1 \max }}{\mathrm{H}_{2 \max }}=\frac{\mathrm{u}_1^2}{\mathrm{u}_2^2} $
$\frac{64}{\mathrm{H}_{2 \max }}=\frac{\mathrm{u}^2}{(\mathrm{u} / 2)^2} $
$ \mathrm{H}_{2 \max }=16 \mathrm{~m}$
Hence the answer is 16.
Question 4: The initial speed of a projectile fired from ground is $u$ At the highest point during its motion, the speed of projectile is $\frac{\sqrt{3}}{2} u$. The time o flight of the projectile is :
1) $\frac{2 \mathrm{u}}{\mathrm{g}}$
2) $\frac{\mathrm{u}}{2 \mathrm{~g}}$
3) $\frac{\sqrt{3} u}{g}$
4) (correct) u
Solution :
At the highest point -
$\begin{aligned}
& \mathrm{u} \cos \theta=\frac{\sqrt{3} \mathrm{u}}{2} \\
& \theta=30 \\
& \mathrm{~T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}}=\frac{\mathrm{u}}{\mathrm{~g}}
\end{aligned}$
Hence, the answer is the option (4).
Question 5: For an amplitude-modulated wave, the minimum amplitude is 3 V , while the modulation index is $60 \%$. The maximum amplitude of the modulated wave is :
1) 10 V
2) (correct) 12 V
3) 15 V
4) 5 V
Solution:
Given, modulation index $=60 \%=0.6$
$\frac{\mathrm{A}_{\mathrm{m}}}{\mathrm{~A}_{\mathrm{c}}}=\frac{0.6}{1}$
Using componendo - dividendo, we can write
$\begin{aligned}
& \frac{A_m+A_c}{A_m-A_c}=\frac{0.6+1}{0.6-1}=\frac{1.6}{-0.4} \\
& A_m+A_c=\frac{1.6}{-0.4} \times\left(A_m-A_c\right) \\
& =\frac{1.6}{-0.4} \times(-3)=12 \mathrm{~V}
\end{aligned}$
Hence, the answer is option (2).
Question 6: In AM modulation, a signal is modulated on a carrier wave such that maximum and minimum amplitudes are found to be 6 V and 2 V respectively. The modulation index is :
1) 100%
2) 80%
3) 60%
4) (correct) 50%
Solution:
$\begin{aligned}
& \mathrm{V}_{\max }=\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{m}}=6 \mathrm{~V} \\
& \mathrm{~V}_{\min }=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{m}}=2 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{c}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{m}}=2 \mathrm{~V}
\end{aligned}$
$\begin{aligned}
& \text { Modulation index }=\mu=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{c}}} \\
& \mu=\frac{1}{2}
\end{aligned}$
or
$\mu=50 \%$
Hence, the answer is the option (4).
Question 7: An amplitude-modulated wave is represented by $C_m(t)=10(1+0 \cdot 2 \cos 12560 t) \sin \left(111 \times 10^4 t\right)$ volts. The modulating frequency in kHz will be $\_\_\_\_$ .
Solution :
$\begin{aligned}
& C_m(t)=10(1+0 \cdot 2 \cos 12560 t) \sin \left(111 \times 10^4 t\right) \\
& \omega_m=12560=2 \pi f \\
& 12560=6 \cdot 28 \times f \\
& f=\frac{12560}{6 \cdot 28} \\
& =2 \cdot 0 \mathrm{kHz} \\
& f=2 \mathrm{kHz}
\end{aligned}$
Hence, the answer is (2).
Question 8: Given below are two statements :
Statement I: For transmitting a signal, the size of the antenna (I) should be comparable to the wavelength of the signal (at least $l=\frac{\lambda}{4}$ in dimension)
Statement II: In amplitude modulation, the amplitude of the carrier wave remains constant (unchanged).
In the light of the above statements, choose the most appropriate answer from the options given below.
1) (correct) Statement is correct but Statement II is incorrect
2) Both Statement I and Statement II are correct
3) Statement I is incorrect but Statement II is correct
4) Both Statement I and Statement II are incorrect
Solution:
Statement 1 is correct.
In Modulation Amplitude of the carrier wave is increased.
Statement 2 is incorrect, in amplitude modulation amplitude of the wave is varied.
Hence, the answer is the option (1).
Question 9:
Find the equivalent resistance between two ends of the following circuit.

1) r
2) $\frac{r}{6}$
3) (correct) $\frac{r}{9}$
4) $\frac{r}{3}$
Solution:

All are in parallel
$R_{e q}=\frac{r / 3}{3}=r / 9$
Hence, the answer is the option (3).
Question 10:
The equivalent resistance of the following network is ________ $\Omega$

Solution:
$6 \Omega$ is short circuit
$
R_{e q}=3 \times \frac{1}{3}=1 \Omega
$
Hence, the answer is 1.
Question 11: Refer to the circuit diagram given in the figure, which of the following observation are correct?
A. The total resistance of the circuit is $6 \Omega$.
B. Current in Ammeter is 1 A
C. Potential across AB is 4 volts.
D. Potential across CD is 4 volts:
E. The total resistance of the circuit is $8 \Omega$.
Choose the correct answer from the options given below:

1) (correct) A, B and D only
2) A, C and D only
3) B, C and E only
4) A, B and C only
Solution:

$\begin{aligned} & \text { Req }=4+\frac{4 \times 4}{4+4} \\ & =6 \Omega \\ & i=\frac{6}{6} \\ & =1 \mathrm{~A} \\ & V_{A B}=\frac{i}{2} \times R \\ & =\frac{1}{2} \times 4 \quad=2 \mathrm{~V}\end{aligned}$
$\begin{aligned} & V_{C D}=i R \\ & =1 \times 4 \\ & =4 \mathrm{~V}\end{aligned}$
Hence, the answer is option (1).
Question 12: In the given circuit 'a' is an arbitrary constant. The value of m for which the equivalent circuit resistance is minimum, will be $\sqrt{\frac{x}{2}}$. The value of $x$ is

Solution:
$
\begin{aligned}
\text { Req } & =\frac{\mathrm{ma}}{3}+\frac{(\mathrm{a} / \mathrm{m})}{2} \\
& =\frac{\mathrm{ma}}{3}+\frac{\mathrm{a}}{2 \mathrm{~m}} \\
& =\frac{2 \mathrm{~m}^2 \mathrm{a}+3 \mathrm{a}}{6 \mathrm{~m}} \\
& =\frac{\mathrm{ma}}{3}+\frac{\mathrm{a}}{2 \mathrm{~m}}
\end{aligned}
$
For $\mathrm{R}_{\text {eq }}$ to be minimum,
$
\begin{aligned}
& \frac{\mathrm{dReq}}{\mathrm{dm}}=0 \\
& \frac{\mathrm{a}}{3}-\frac{\mathrm{a}}{2 \mathrm{~m}^2}=0 \\
& \frac{\mathrm{a}}{3}=\frac{\mathrm{a}}{2 \mathrm{~m}^2} \Rightarrow \mathrm{~m}^2=\frac{3}{2} \\
& \quad \mathrm{~m}=\sqrt{\frac{3}{2}}
\end{aligned}
$
Hence, the answer is option (3).
Question 13: A proton of mass ' $\mathrm{m}_{\mathrm{p}}$ ' has the same energy as that of a photon of wavelength' $\lambda$ '. If the proton is moving at a non-relativistic speed, then the ratio of its de Broglie wavelength to the wavelength of the photon is.
1) $\frac{1}{c} \sqrt{\frac{2 E}{m_p}}$
2) $\frac{1}{c} \sqrt{\frac{E}{m_p}}$
3) (correct $\frac{1}{c} \sqrt{\frac{E}{2 m_p}}$
4) $\frac{1}{2 c} \sqrt{\frac{E}{m_p}}$
Solution:
E is missing in the question but considering E as energy, the solution will be
$\begin{aligned}
& \mathrm{E}_{\text {photon }}=\frac{\mathrm{hc}}{\lambda}=\mathrm{E} ; \mathrm{E}_{\text {proton }}=\frac{1}{2} \mathrm{~m}_{\mathrm{p}} \mathrm{v}^2=\mathrm{E} \\
& \frac{\lambda_{\text {proton }}}{\lambda_{\text {photon }}}=\frac{\mathrm{h} / \mathrm{p}}{\mathrm{hc} / \mathrm{E}}=\frac{\mathrm{h} / \sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{E}}}{\mathrm{hc} / \mathrm{E}} \\
& =\frac{\mathrm{E}}{\mathrm{c} \sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{E}}} \\
& \frac{\lambda_{\text {proton }}}{\lambda_{\text {photon }}}=\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}_{\mathrm{p}}}}
\end{aligned}$
Hence, the answer is the option (3).
Question 14: A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is : (Assume $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=9.0 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{p}}=1836$ times $\mathrm{m}_{\mathrm{e}}$ )
1) (correct) $1: 1836$
2) $1: \frac{1}{1836}$
3) $1: \frac{1}{\sqrt{1836}}$
4) $1: \sqrt{1836}$
Solution:
$\lambda$ is same for both
$\begin{aligned}
& P=\frac{h}{\lambda} \text { same for both } \\
& P=\sqrt{2 \mathrm{mK}}
\end{aligned}$
Hence,
$\begin{aligned}
\mathrm{K} & \propto \frac{1}{\mathrm{~m}} \\
\Rightarrow & \frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\mathrm{e}}}=\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{~m}_{\mathrm{p}}}=\frac{1}{1836}
\end{aligned}$
Hence, the answer is option (1).
Question 15: A proton and an electron have the same de Broglie wavelength. If $K_p$ and $K_e$ be the kinetic energies of proton and electron respectively. Then choose the correct relation :
1) $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{e}}{ }^2$
2) $K_p=K_e$
3) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{e}}{ }^2$
4) (correct) $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{e}}$
Solution:
De Broglie wavelength of proton \& electron $=\lambda$
$
\begin{aligned}
& \because \lambda=\frac{\mathrm{h}}{\mathrm{p}} \\
& \therefore \mathrm{p}_{\text {proton }}=\mathrm{p}_{\text {electron }} \\
& \because \mathrm{KE}=\frac{\mathrm{p}^2}{2 \mathrm{~m}} \\
& \therefore \mathrm{KE}_{\text {proton }}<\mathrm{KE}_{\text {electron }} \\
& {\left[\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{e}}\right]}
\end{aligned}
$
Hence, the answer is option (4).
Question 16: An $\alpha$-particle, a proton and an electron have the same kinetic energy. Which one of the following is correct in the case of their de-Broglie wavelength:
1) (correct) $\lambda_\alpha<\lambda_{\mathrm{p}}<\lambda_{\mathrm{e}}$
2) $\lambda_\alpha=\lambda_{\mathrm{p}}=\lambda_{\mathrm{e}}$
3) $\lambda_\alpha>\lambda_{\mathrm{p}}>\lambda_{\mathrm{e}}$
4) $\lambda_\alpha>\lambda_{\mathrm{p}}<\lambda_{\mathrm{e}}$
Solution:
$\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mkE}}} \alpha \frac{1}{\sqrt{\mathrm{~m}}} \\
& \mathrm{~m}_{\mathrm{a}}>\mathrm{m}_{\mathrm{p}}>\mathrm{m}_{\mathrm{e}} \\
& \therefore \lambda_{\mathrm{a}}<\lambda_{\mathrm{p}}<\lambda_{\mathrm{e}}
\end{aligned}$
Hence, the answer is the option (1).
Question 17: The output of the circuit is low (zero) for :

(A) $\mathrm{X}=0, \mathrm{Y}=0$ (B) $X=0, Y=1$
(C) $\mathrm{X}=1, \mathrm{Y}=0$ (D) $\mathrm{X}=1, \mathrm{Y}=1$
Choose the correct answer from the options given below :
1) (A), (C) and (D) only
2) (A), (B) and (C) only
3) (correct) (B), (C) and (D) only
4) (A), (B) and (D) only
Solution:

Hence, the answer is the option (3).
Question 18: The output (Y) of logic circuit given below is 0 only when :

1) $A=1, B=0$
2) (correct) $A=0, B=0$
3) $A=1, B=1$
4) $A=0, B=1$
Solution:

Hence, the answer is the option 2.
Question 19: For the following circuit and given inputs A and B, choose the correct option for output 'Y'


1)

2)

3)

4)

Solution:

Output,
$\mathrm{y}=\overline{\overline{\mathrm{A}} \cdot \mathrm{B}}=\overline{\overline{\mathrm{A}}}+\overline{\mathrm{B}} = A + \overline{B}$
$\begin{array}{ll}
\mathrm{t}_1 \text { to } \mathrm{t}_2, & \mathrm{~A}=0, \mathrm{~B}=1, \mathrm{Y}=0 \\
\mathrm{t}_2 \text { to } \mathrm{t}_3 & \mathrm{~A}=1, \mathrm{~B}=1, \mathrm{Y}=1 \\
\mathrm{t}_3 \text { to } \mathrm{t}_4 & \mathrm{~A}=0, \mathrm{~B}=0, \mathrm{Y}=1 \\
\mathrm{t}_4 \text { to } \mathrm{t}_5, & \mathrm{~A}=1, \mathrm{~B}=1, \mathrm{Y}=1 \\
\mathrm{t}_5 \text { to } \mathrm{t}_6, & \mathrm{~A}=1, \mathrm{~B}=0, \mathrm{Y}=1 \\
\mathrm{After}~\mathrm{t}_6, & \mathrm{~A}=0, \mathrm{~B}=0, \mathrm{Y}=1
\end{array}$
Hence, the answer is the option 3.
Question 20:
For the logic circuit shown, the output waveform at Y is:

1)

2)

3)

4)

Solution:
$\begin{aligned} y=\bar{A} \cdot \overline{\mathrm{~B}} \Rightarrow y & =\bar{A}+\bar{B} \\ y & =\mathrm{A}+\mathrm{B}\end{aligned}$

Hence, the answer is the option 2.
Frequently Asked Questions (FAQs)
Focusing on repeated types of questions and topics is a very good way of strategy because, one, the absolute same question may not come; but, the JEE MAINS constantly tests a set of core fundamental concepts. By knowing and mastering the high-frequency topics.
Not magic, but certainly helps boost your chances. Scoring over 90 is indicative of getting ~22-24 questions correct which can be achieved as a combination of:
Excel in High-Yield Topics: acquire a most significant share of marks with these secure sources.
Adequate Coverage of the Syllabus: The other chapters cannot be left completely untouched, as they may have easy questions that will also count for the grand total.
Examination Skills: Time management, accuracy, and avoiding negative marks.
The JEE Main 80/20 rule suggests 80% of your exam score comes from 20% of the syllabus, meaning focusing on high-weightage, frequently tested topics yields the best results, not trying to cover everything equally.
To score 90+ marks in JEE Main Physics:
Understand basic concepts from NCERT thoroughly.
Prioritize high-weightage chapters such as Modern Physics, Optics, and Electricity and Magnetism.
Regularly solve previous year questions and JEE Main mock tests.
A good rule of thumb is a 70-30 rule during your revision phase.
70% of your self-study time should be given to mastering, revising, and practicing problems from these high-yield topics.
Beyond that, 30% should be spent on the remaining syllabus so that you could attempt less-confident questions from anywhere in the paper.
On Question asked by student community
Hello,
Yes, attendance is compulsory in Class XI and XII.
As per school and board rules, students must maintain minimum attendance, usually around 75%. Schools can stop students from appearing in board exams if attendance is short.
Even if a student is preparing for JEE or any other competitive exam
Hello,
You can find here the direct links to download the JEE Main last 10 years PYQ PDFs from the Official Careers360 website.
Kindly visit this link to access the question papers : Last 10 Years JEE Main Question Papers with Solutions PDF
Hope it helps !
Hello Harika,
Firstly, you cannot prepare for JEE in 8 days if you havent studied before. But still, You can try solving the previous year question papers. Here's a Link for the same
HELLO,
If you are from General category with 57 percent in 12th then to appear for JEE Advanced you need to be in top percentile of your board as the eligibility for JEE advanced you need at least 75 percent in 12th or in the top 20 percentile of your
Hello aspirant,
The JEE Main 2026 admission card will include information about the exam location. On the other hand, students can use the JEE Main 2026 city notification slip, which was made available on January 8, 2026, to check the exam city beforehand. The second week of January 2026 is
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
National level exam conducted by VIT University, Vellore | Ranked #16 by NIRF for Engg. | NAAC A++ Accredited
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Application Deadline: 15th Jan
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted
World-class and highly qualified engineering faculty. High-quality global education at an affordable cost