JEE Main: Differentiation and How To Calculate ‘e’

JEE Main: Differentiation and How To Calculate ‘e’

Ramraj SainiUpdated on 19 Apr 2024, 07:49 PM IST

We all have come across the number ‘e’ while studying logarithm and calculus. This number is an irrational number like π, and is called Euler’s Number. Its value is 2.71828… and this sequence of digits never ends. So, how can we find this number and what is so special about this number?

JEE Main: Differentiation and How To Calculate ‘e’
Exponential-graph(Image:Wikimedia commons)

A property that you must have studied in differentiation that stands out among all differentiation formulae is

\frac{d}{dx}e^x=e^x

So, the differentiation of the function f(x) = ex, is this function itself. This makes this function unique. We will be using this property to calculate the number ‘e’. So, in all the calculations below, we will not use ‘e’ directly.

Let us start with the differentiation of a general exponential function, f(x) = 2x.

Using First Principle of Differentiation, we know that the differentiation of a function f(x) is

f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}

So, differentiation of f(x) = 2x will be

\\f'(x)=\lim_{h\rightarrow 0}\frac{2^{x+h}-2^x}{h}\\\\f'(x)=\frac{2^x.2^h-2^x}{h}\\\\f'(x)=2^x\lim_{h\rightarrow 0}\frac{2^h-1}{h}.......equation(1)

Now, when the value of the limit h→0 [(2h-1)/h] is calculated by putting different values of h that are very close to 0, we can see that the value of this expression approaches 0.693147…(Note that we are not directly using the value of this limit as ln(2), as the number ‘e’ and thus ln(x), which is log with the base ‘e’, is not yet known).

Also Read,

Let us see what values of [(2h-1)/h] we get by putting different values of h that are close to 0. We can use a calculator to find these values

When h = 0.001, [(2h-1)/h] = 0.6933…

When h = 0.0001, [(2h-1)/h] = 0.6931…

When h = 0.00000001, [(2h-1)/h] = 0.6931…

We can see that [(2h-1)/h] value approaches 0.6931…and hence

limit h→0 [(2h-1)/h]= 0.6931…

From equation (i):

f'(x) = 2x.(0.6931…)

So, differentiation of f(x) = 2x is of the form

f'(x) =  Some constant. f(x)

Now if we do the same procedure with f(x) = 4x

\\f'(x)=\lim_{h\rightarrow 0}\frac{4^{x+h}-4^x}{h}\\\\f'(x)=\frac{4^x.4^h-4^x}{h}\\\\f'(x)=4^x\lim_{h\rightarrow 0}\frac{4^h-1}{h}.......equation(2)

When h = 0.001, [(4h-1)/h] = 1.3872…..

When h = 0.0001, [(4h-1)/h] = 1.38631…

When h = 0.00000001, [(4h-1)/h] = 1.38629…

So, limit h→0 [(4h-1)/h] = 1.38629…

And from (ii),

f'(x) =  4x . (1.38629…)

So, differentiation of f(x) = 4x is again of the form

f'(x) =  Some constant. f(x)

In fact, we can do the same exercise for any positive real number a, and we will find that the differentiation of f(x) = ax equals some constant times ax

It can also be seen that the value of this constant keeps on increasing as the value of ‘a’ increases. For example

For a = 2, the constant we calculated was 0.6931…

For a = 4, the constant we calculated was 1.38629…

Similarly, for a = 5, the constant can be calculated to be 1.6094…

For a = 6, the constant is 1.7917…

So naturally we can ask ourselves the question that can we find a number ‘a’ for which this constant value equals 1, and thus differentiation of ax is 1. ax, meaning that the differentiation of the function ax is this function itself ( = ax)

After doing multiple hits and trials, this number can be found to be 2.71828. That is why we have the unique property,

d/dx(ex)= ex

Euler’s Number also finds applications in fields of mathematics other than calculus. One of the most important applications is in Complex Numbers. You must have come across the relation eiπ = - 1. Imaginary powers of e help us get the values of many trigonometric series which would otherwise be very difficult to prove using only the trigonometric relations. The number is also used in Finance (to calculate compound interest), to explain population growth of humans or microbes, to explain radioactive decay (which in turn is used to tell the age of ancient objects), etc.

Due to numerous applications, ‘e’ is the second most famous mathematical constant after π. We also celebrate ‘e-day’ on 7 February. This date is chosen as it is written as 2/7 in month/date format and the digits 2,7 represent the first two digits used in the value of ‘e’ (2.71…).

Articles
|
Upcoming Engineering Exams
Ongoing Dates
HITSEEE Application Date

5 Nov'25 - 22 Apr'26 (Online)

Ongoing Dates
SMIT Online Test Application Date

15 Nov'25 - 12 Apr'26 (Online)

Ongoing Dates
SNUSAT Application Date

19 Nov'25 - 31 Mar'26 (Online)

Certifications By Top Providers
Computer Fundamentals
Via Devi Ahilya Vishwavidyalaya, Indore
Certificate Program in Machine Learning and AI with Python
Via Indian Institute of Technology Bombay
B.Tech Engineering Technology
Via Birla Institute of Technology and Science, Pilani
Post Graduate Diploma Program in Data Science and Artificial Intelligence
Via Indraprastha Institute of Information Technology, Delhi
Programming Basics
Via Indian Institute of Technology Bombay
Basic Programming using Python
Via Indian Institute of Technology Bombay
Udemy
 1525 courses
Swayam
 817 courses
NPTEL
 773 courses
Coursera
 697 courses
Edx
 608 courses
Explore Top Universities Across Globe

Questions related to JEE Main

On Question asked by student community

Have a question related to JEE Main ?

HELLO,

Below i am attaching the link through which you will be able to download the Chapter wise PYQ for JEE Mains

Here is the link :- https://engineering.careers360.com/articles/jee-mains-chapterwise-pyq-previous-year-questions-solutions-pdf

Hope this will help you!

HELLO,

For the JEE Mains , key high scoring areas you need to focus on high weightage Physics topics like Wave Optics , Photoelectric Effect , Oscillations, Maths Topics :- 3D Geometry , sequences and Series , Calculus , Binomial Theorem and in Chemistry areas like Physical Chemistry basics ,

HELLO,

I am attaching the link below through which you will be able to access the Marks Vs Percentile for JEE Mains 2026

Here is the link :- https://engineering.careers360.com/articles/jee-main-marks-vs-percentile

Hope this will help you!

Hello aspirant,

High-scoring chapters and themes from Physics, Chemistry, and Mathematics must be the main focus of students preparing for the JEE Mains 2026. Candidates can effectively prepare for the NTA JEE Main 2026 exam by comprehending the most crucial subjects.  For JEE Mains 2026, it is essential to go

HELLO,

For JEE Main , high scoring areas include Calculus and Coordinate Geometry , Electrostatics and Optics and chemical Bonding and Organic Chemistry Fundamentals with Modern Physics and Physical Chemistry also holding significant weightage for high scores.

Here you can visit the link for more detailed information :- https://engineering.careers360.com/download/ebooks/jee-main-highest-scoring-chapters-and-topics

Hope