We all have come across the number ‘e’ while studying logarithm and calculus. This number is an irrational number like π, and is called Euler’s Number. Its value is 2.71828… and this sequence of digits never ends. So, how can we find this number and what is so special about this number?
A property that you must have studied in differentiation that stands out among all differentiation formulae is

So, the differentiation of the function f(x) = ex, is this function itself. This makes this function unique. We will be using this property to calculate the number ‘e’. So, in all the calculations below, we will not use ‘e’ directly.
Let us start with the differentiation of a general exponential function, f(x) = 2x.
Using First Principle of Differentiation, we know that the differentiation of a function f(x) is

So, differentiation of f(x) = 2x will be

Now, when the value of the limit h→0 [(2h-1)/h] is calculated by putting different values of h that are very close to 0, we can see that the value of this expression approaches 0.693147…(Note that we are not directly using the value of this limit as ln(2), as the number ‘e’ and thus ln(x), which is log with the base ‘e’, is not yet known).
Also Read,
Let us see what values of [(2h-1)/h] we get by putting different values of h that are close to 0. We can use a calculator to find these values
When h = 0.001, [(2h-1)/h] = 0.6933…
When h = 0.0001, [(2h-1)/h] = 0.6931…
When h = 0.00000001, [(2h-1)/h] = 0.6931…
We can see that [(2h-1)/h] value approaches 0.6931…and hence
limit h→0 [(2h-1)/h]= 0.6931…
From equation (i):
f'(x) = 2x.(0.6931…)
So, differentiation of f(x) = 2x is of the form
f'(x) = Some constant. f(x)
Now if we do the same procedure with f(x) = 4x

When h = 0.001, [(4h-1)/h] = 1.3872…..
When h = 0.0001, [(4h-1)/h] = 1.38631…
When h = 0.00000001, [(4h-1)/h] = 1.38629…
So, limit h→0 [(4h-1)/h] = 1.38629…
And from (ii),
f'(x) = 4x . (1.38629…)
So, differentiation of f(x) = 4x is again of the form
f'(x) = Some constant. f(x)
In fact, we can do the same exercise for any positive real number a, and we will find that the differentiation of f(x) = ax equals some constant times ax
It can also be seen that the value of this constant keeps on increasing as the value of ‘a’ increases. For example
For a = 2, the constant we calculated was 0.6931…
For a = 4, the constant we calculated was 1.38629…
Similarly, for a = 5, the constant can be calculated to be 1.6094…
For a = 6, the constant is 1.7917…
So naturally we can ask ourselves the question that can we find a number ‘a’ for which this constant value equals 1, and thus differentiation of ax is 1. ax, meaning that the differentiation of the function ax is this function itself ( = ax)
After doing multiple hits and trials, this number can be found to be 2.71828. That is why we have the unique property,
d/dx(ex)= ex
Euler’s Number also finds applications in fields of mathematics other than calculus. One of the most important applications is in Complex Numbers. You must have come across the relation eiπ = - 1. Imaginary powers of e help us get the values of many trigonometric series which would otherwise be very difficult to prove using only the trigonometric relations. The number is also used in Finance (to calculate compound interest), to explain population growth of humans or microbes, to explain radioactive decay (which in turn is used to tell the age of ancient objects), etc.
Due to numerous applications, ‘e’ is the second most famous mathematical constant after π. We also celebrate ‘e-day’ on 7 February. This date is chosen as it is written as 2/7 in month/date format and the digits 2,7 represent the first two digits used in the value of ‘e’ (2.71…).
On Question asked by student community
HELLO,
Below i am attaching the link through which you will be able to download the Chapter wise PYQ for JEE Mains
Here is the link :- https://engineering.careers360.com/articles/jee-mains-chapterwise-pyq-previous-year-questions-solutions-pdf
Hope this will help you!
HELLO,
For the JEE Mains , key high scoring areas you need to focus on high weightage Physics topics like Wave Optics , Photoelectric Effect , Oscillations, Maths Topics :- 3D Geometry , sequences and Series , Calculus , Binomial Theorem and in Chemistry areas like Physical Chemistry basics ,
HELLO,
I am attaching the link below through which you will be able to access the Marks Vs Percentile for JEE Mains 2026
Here is the link :- https://engineering.careers360.com/articles/jee-main-marks-vs-percentile
Hope this will help you!
Hello aspirant,
High-scoring chapters and themes from Physics, Chemistry, and Mathematics must be the main focus of students preparing for the JEE Mains 2026. Candidates can effectively prepare for the NTA JEE Main 2026 exam by comprehending the most crucial subjects. For JEE Mains 2026, it is essential to go
HELLO,
For JEE Main , high scoring areas include Calculus and Coordinate Geometry , Electrostatics and Optics and chemical Bonding and Organic Chemistry Fundamentals with Modern Physics and Physical Chemistry also holding significant weightage for high scores.
Here you can visit the link for more detailed information :- https://engineering.careers360.com/download/ebooks/jee-main-highest-scoring-chapters-and-topics
Hope
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
National level exam conducted by VIT University, Vellore | Ranked #16 by NIRF for Engg. | NAAC A++ Accredited
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Application Deadline: 15th Jan
World-class and highly qualified engineering faculty. High-quality global education at an affordable cost
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted