JEE Main Chemistry Syllabus
Saakshi Lama, 04 Sep 2019, #JEE Main
Applications Open Now
Manipal B.Tech Admissions 2020
Apply
UPES - School of Engineering
Apply

JEE Main Chemistry Syllabus - Candidates can check the syllabus of JEE Main Chemistry to know which topics are to be studied for the upcoming entrance examination. National Testing Agency (NTA) will be releasing the JEE Main Chemistry syllabus in online mode to let the candidates know the units and topics of the subject. Questions for JEE Main exam Chemistry section will be created by the authorities as per the topics mentioned in the syllabus. It is to be noted that syllabus of JEE Main Chemistry will mostly be the topics covered in 11th and 12th standard. JEE Main Chemistry syllabus will consist of three sections - Physical, Inorganic and Organic Chemistry. Candidates are advised to check the syllabus of JEE Main Chemistry before starting the preparation process to accordingly create their study schedule. Read the full article to know more about JEE Main Chemistry Syllabus.

Latest [ IIT/JEE 2020 Online Preparation – Crack JEE 2020 with JEE Knockout Program ( AI-Based Coaching), If you Do Not Qualify- Get 100% MONEY BACK. Know More

NTA will be conducting JEE Main 2020 from January 6 to 11. JEE Main 2020 application form will be made available from September 2 to 30, 2019.

JEE Main Chemistry Syllabus 2020

S.No

Units

Topics

Section A – Physical Chemistry

1

Some Basic Concepts in Chemistry

Matter and its nature, Dalton's atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination: Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.

2

States of Matter

Classification of matter into solid, liquid and gaseous states.

Gaseous State:

Measurable properties of gases; Gas laws - Boyle's law, Charle's law, Graham's law of diffusion, Avogadro's law, Dalton's law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation.

Liquid State:

Properties of liquids - vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).

Solid State:

Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg's Law and its applications; Unit cell and lattices, packing in solids (fee, bec and hep lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical and magnetic properties.

3

Atomic Structure

Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom - its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr's model; Dual nature of matter, de-Broglie's relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features. Concept of atomic orbitals as one electron wave functions; Variation of t|/ and \|/2 with r for Is and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d - orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals - aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

4

Chemical Bonding and Molecular Structure

Kossel - Lewis approach to chemical bond formation, concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding: Concept of electronegativity, Fajan's rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding:

Valence bond theory - Its important features, concept of hybridization involving s, p and d orbitals; Resonance.

Molecular Orbital Theory - Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.

Elementary idea of metallic bonding. Hydrogen bonding and its applications.

5

Chemical Thermodynamics

Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.

First law of thermodynamics - Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess's law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.

Second law of thermodynamics: Spontaneity of processes; AS of the universe and AG of the system as criteria for spontaneity, AG" (Standard Gibbs energy change) and equilibrium constant.

6

Solutions

Different methods for expressing concentration of solution - molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult's Law - Ideal and non-ideal solutions, vapour pressure - composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions - relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van't Hoff factor and its significance.

7

Equilibrium

Meaning of equilibrium, concept of dynamic equilibrium.

Equilibria involving physical processes: Solid -liquid, liquid - gas and solid - gas equilibria, Henry's law, general characteristics of equilibrium involving physical processes.

Equilibria involving chemical processes: Law of

chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of AG and AG" in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier's principle.

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted - Lowry and Lewis) and their ionization, acid - base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.

8

Redox Reactions and Electro-chemistry

Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.

Electrolytic and metallic conduction, conductance in electrolytic solutions, molar conductivities and their variation with concentration: Kohlrausch's law and its applications.

Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half - cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs' energy change; Dry cell and lead accumulator; Fuel cells.

9

Chemical Kinetics

Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half -lives, effect of temperature on the rate of reactions -Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

10

Surface Chemistry

Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids - Freundlich and Langmuir adsorption isotherms, adsorption from solutions.

Catalysis - Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism.

Colloidal state- distinction among true solutions, colloids and suspensions, classification of colloids -lyophilic, lyophobic; multimolecular, macromolecular and associated colloids (micelles), preparation and properties of colloids - Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.

Section B – Inorganic Chemistry

11

Classification of Elements and Periodicity in Properties

Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.

12

General Principles and Processes of Isolation of Metals

Modes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals -concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.

13

Hydrogen

Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Classification of hydrides - ionic, covalent and interstitial; Hydrogen as a fuel.

14

S - Block Elements (Alkali and Alkaline Earth Metals)

Group -1 and 2 Elements

General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.

Preparation and properties of some important compounds - sodium carbonate and sodium hydroxide and sodium hydrogen carbonate; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.

15

p- Block Elements

Group -13 to Group 18 Elements


General Introduction: Electronic configurations and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

Groupwise study of the p - block elements Group -13

Preparation, properties and uses of boron and aluminium; Structure, properties and uses of borax, boric acid, diborane, boron trifluoride, aluminium chloride and alums.


Group -14

Tendency for catenation; Structure, properties and uses of Allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.


Group -15

Properties and uses of nitrogen and phosphorus; Allotropic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PC13, PCI,); Structures of oxides and oxoacids of nitrogen and phosphorus.


Group -16

Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.


Group -17

Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.


Group-18

Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

16

d - and f - Block Elements

Transition Elements

General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements -physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr, 07 and Kmn04.


Inner Transition Elements

Lanthanoids - Electronic configuration, oxidation states and lanthanide contraction.

Actinides - Electronic configuration and oxidation states.

17

Co-Ordination Compounds

Introduction to co-ordination compounds, Werner's theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear coordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co­ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

18

Environmental Chemistry

Environmental pollution - Atmospheric, water and soil.

Atmospheric pollution - Tropospheric and Stratospheric

Tropospheric pollutants - Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Green house effect and Global warming; Acid rain;

Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.

Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer - its mechanism and effects.

Water Pollution - Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.

Soil pollution - Major pollutants such as: Pesticides (insecticides, herbicides and fungicides), their harmful effects and prevention.

Strategies to control environmental pollution.

Section C – Organic Chemistry

19

Purification and Characterization of Organic Compounds

Purification - Crystallization, sublimation, distillation, differential extraction and chromatography - principles and their applications.

Qualitative analysis - Detection of nitrogen, sulphur, phosphorus and halogens.

Quantitative analysis (basic principles only)- Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.

Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.

20

Some Basic Principles of Organic Chemistry

Tetravalency of carbon; Shapes of simple molecules -hybridization (s and p); Classification of organic compounds based on functional groups: and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism - structural and stereoisomerism.


Nomenclature (Trivial and IUPAC)

Covalent bond fission - Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.


Electronic displacement in a covalent bond

- Inductive effect, electromeric effect, resonance and hyperconjugation.


Common types of organic reactions- Substitution, addition, elimination and rearrangement.

21

Hydrocarbons

Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.


Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes.

Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff s and peroxide effect); Ozonolysis and polymerization.

Alkynes - Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.

Aromatic hydrocarbons - Nomenclature, benzene -structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel - Craft's alkylation and acylation, directive influence of functional group in mono-substituted benzene.

22

Organic Compounds Containing Halogens

General methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions.

Uses; Environmental effects of chloroform, iodoform freons and DDT.

23

Organic Compounds Containing Oxygen

General methods of preparation, properties, reactions and uses.


ALCOHOLS, PHENOLS AND ETHERS


Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.

Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reitner - Tiemann reaction.

Ethers: Structure.

Aldehyde and Ketones: Nature of carbonyl group;Nucleophilic addition to >C=0 group, relative reactivities of aldehydes and ketones; Important reactions such as - Nucleophilic addition reactions (addition of HCN, NH, and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of a-hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction;

Chemical tests to distinguish between aldehydes and Ketones.

Carboxylic Acids

Acidic strength and factors affecting it.

24

Organic Compounds Containing Nitrogen

General methods of preparation, properties, reactions and uses.

Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.

Diazonium Salts: Importance in synthetic organic chemistry.

25

Polymers

General introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization;

Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses - polythene, nylon, polyester and bakelite.

26

Biomolecules

General introduction and importance of biomolecules.

Carbohydrates - Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose and maltose).

Proteins - Elementary Idea of a-amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.

Vitamins - Classification and functions.

Nucleic Acids - Chemical constitution of DNA and RNA.

Biological functions of nucleic acids.

27

Chemistry In Everyday Life

Chemicals in medicines - Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamine - their meaning and common examples.

Chemicals in food - Preservatives, artificial sweetening agents - common examples.

Cleansing agents - Soaps and detergents, cleansing action.

28

Principles Related to Practical Chemistry

Detection of extra elements (N,S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.

• Chemistry involved in the preparation of the following:

Inorganic compounds: Mohr's salt, potash alum. Organic compounds: Acetanilide, p nitroacetanilide, aniline yellow, iodoform.

•Chemistry involved in the titrimetric exercises -Acids bases and the use of indicators, oxalic-acid vs KMnO,, Mohr's salt vs KMnO,.

•Chemical principles involved in the qualitative salt analysis:

Cations - Pb2+, Cu!+, Af,+, Fe1+, Zn2+, Ni2+, Ca2+, Ba2+,

Mg2+, nh;.

Anions- CO,", S2~, SO4", NO", NO~2, Cf, Br", I" . (Insoluble salts excluded).

•Chemical principles involved in the following experiments:

1. Enthalpy of solution of CuS04

2. Enthalpy of neutralization of strong acid and strong base.

3. Preparation of lyophilic and lyophobic sols.

4. Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature.



IIT/JEE 2020 Online Preparation

Crack JEE 2020 with JEE Knockout Program, If you Do Not Qualify- Get 100% MONEY BACK

Start Now

Applications Open Now

Manipal B.Tech Admissions 2020
Manipal B.Tech Admissions 2020
Apply
UPES - School of Engineering
UPES - School of Engineering
Apply
SRM B.Tech Admissions 2020
SRM B.Tech Admissions 2020
Apply
VITEEE 2020 - VIT Engineering Entrance Examination
VITEEE 2020 - VIT Engineering...
Apply
View All Application Forms

More like JEE Main

Questions related to JEE Main

Showing 87123 out of 87123 Questions
7 Views

how can I open my jee knockout course on my smart phone career 360 app

Sachin Kumar 13th Nov, 2019

Hello aspirant,

When you download the app register your profile and then go to the menu where you find your selected packages of career360. You can open it from there and learn the concepts. Best of luck

30 Views

sir I qualified jee mains but i got less rank In emacet then I can join top 10 engineering colleges

Bhaskar Nakkina Student Expert 12th Nov, 2019

Hii,

EAMCET and JEE Mains are both different exams. EAMCET  is a state level Entrance Test to get admission in local Engineering Colleges  and JEE is a National level Entrance Test to get admission in Engineering Colleges all over India. So If you are not able to make a good Score in EAMCET you won't get better College in state level. If you have good JEE percentile then apply for Colleges based on that Score.

22 Views

sir/mam i am in eleventh class tell me that how i focusd in 11 class for jee main and current topic of this class

Siddhi Shenoy 12th Nov, 2019

Hi Atithya,

JEE is one of the most difficult entrance examination in not only India, but in the world. However, it can be cracked. For doing so, you need to make a rigid but realistic timetable and strictly adhere to it. You need to be able to focus on what's important and block out everything else. You have to be able to study with concentration and dedication for hours on end.

12 Views

sir mene 2019 me inter kiya hai kiya me 2021 me jee mains ka paper de skta hoon plzz tell me

Shudhanshu Gupta Student Expert 12th Nov, 2019
Hello.
As per your doubt I am informing you that a candidate  can give jee mains exam in three continuous years from  your intermediate passing year, and now you have two attempts in a year so you have total 2*3=6 attempt  , that is you are eligible to give JEE mains 2021 if you are 2019 intermediate passed student,
For mare detail about JEE mains you can go with the below link:
https://engineering.careers360.com/articles/jee-main-eligibility-criteria
Best of luck.
11 Views

Sample paper for jee preparation class11

Aditi Amrendra Student Expert 12th Nov, 2019
Hello,


I am providing you a link below where you will be able to find sample papers for JEE Mains.

https://engineering.careers360.com/articles/jee-main-sample-papers

I hope this helps.
Top
The question have been saved in answer later, you can access it from your profile anytime. Access now

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
24,000+ Colleges
500+ Exams
1500+ E-books