JEE Advanced Syllabus 2021  IIT Kharagpur has released the JEE Advanced 2021 syllabus on the official website. Candidates preparing for the exam must refer to the official syllabus of JEE Advanced 2021. Candidates are provided here with the detailed JEE Advanced syllabus for all three subjects, Physics, Chemistry and Maths in downloadable pdf format. Best books for JEE Advanced 2021 recommended by previous year toppers and subject experts are also provided here. Along with the JEE Advanced syllabus, candidates must also be aware of the JEE Advanced exam pattern provided here. JEE Advanced 2021 will be conducted on July 3. Candidates must also practice for the JEE Advanced mock test 2021 to prepare well for the exam.
UPDATE: B.Tech applications Open Manipal Institute of Technology Apply  SRM Institute of Science and Technology Apply  UPES Apply
Subject 
Download Link 
JEE Advanced Physics Syllabus PDF 

JEE Advanced Chemistry Syllabus PDF 

JEE Advanced Maths Syllabus PDF 
Candidates can check here detailed topic wise JEE Advanced 2021 syllabus for all three subjects. The syllabus of JEE Main 2021 contains all topics that need to be covered to prepare for the exam.
Avail upto 50% tuition fee waiver for the first semester  93% Engineering Placements  Highest CTC 44 Lac
JEE Advanced Maths Syllabus 2021
Sections 
Topics 
Algebra 
Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations. Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots. Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers. Logarithms and their properties. Permutations and combinations , binomial theorem for a positive integral index, properties of binomial coefficients. 
Matrices 
Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skewsymmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables. 
Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations. 

Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and submultiple angles, general solution of trigonometric equations. Relations between sides and angles of a triangle, sine rule, cosine rule, halfangle formula and the area of a triangle, inverse trigonometric functions (principal value only). 

Analytical Geometry 
Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin. Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle. Equation of a circle in various forms, equations of tangent, normal and chord. Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line. Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal. Locus problems. Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane. 
Differential Calculus 
Real valued functions of a real variable, into, onto and onetoone functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions. Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions. Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions. Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions. Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s Theorem and Lagrange’s mean value theorem. 
Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus. Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves. Formation of ordinary differential equations , solution of homogeneous differential equations, separation of variables method, linear first order differential equations 

Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations. 
Sections 
Topics 
General 
Units and dimensions, Dimensional analysis, Least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using uv method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box. 
Mechanics 
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular motion; Relative velocity. Newton’s laws of motion ; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power ; Conservation of linear momentum and mechanical energy. Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions. Law of gravitation ; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity. Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies. Linear and angular simple harmonic motions. Hooke’s law, Young’s modulus. Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications. Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound). 
Thermal Physics 
Thermal expansion of solids Liquids and gases Calorimetry, latent heat Heat conduction in one dimension Elementary concepts of convection and radiation, Newton's law of cooling Ideal gas laws Specific heats (Cv and Cp for monoatomic and diatomic gases) Isothermal and adiabatic processes, bulk modulus of gases Equivalence of heat and work First law of thermodynamics and its applications (only for ideal gases) Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law Wien’s displacement law, Stefan’s law. 
Electricity and Magnetism 
Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor. Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current. Biot–Savart’s law and Ampere’s law; Magnetic field near a currentcarrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a currentcarrying wire in a uniform magnetic field. Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter, and their conversions. Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with d.c. and a.c. sources. 
Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification. Wave nature of light: Huygen’s principle, interference limited to Young’s doubleslit experiment. 

Modern Physics 
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half Life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes. Photoelectric effect; Bohr’s theory of hydrogenlike atoms; Characteristic and continuous Xrays, Moseley’s law; de Broglie wavelength of matter waves. 
Sections 
Topics 
General Topics 
Concept of atoms and molecules Dalton’s atomic theory Mole concept Chemical formulae Balanced chemical equations Calculations (based on mole concept) involving common oxidationreduction, neutralization, and displacement reactions Concentration in terms of mole fraction, molarity, molality and normality. 
Gaseous and Liquid State 
Absolute scale of temperature, ideal gas equation Deviation from ideality, van der Waals equation Kinetic theory of gases , average, root mean square and most probable velocities and their relation with temperature Law of partial pressures Vapour pressure Diffusion of gases. 
Atomic Structure and Chemical Bonding 
Bohr model, spectrum of hydrogen atom, quantum numbers Waveparticle duality, de Broglie hypothesis Uncertainty principle Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals Electronic configurations of elements (up to atomic number 36) Aufbau principle Pauli’s exclusion principle and Hund’s rule Orbital overlap and covalent bond Hybridisation involving s, p, and d orbitals only Orbital energy diagrams for homonuclear diatomic species Hydrogen bond Polarity in molecules, dipole moment (qualitative aspects only) VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral). 
Energetics 
First law of thermodynamics Internal energy, work and heat, pressurevolume work Enthalpy, Hess’s law Heat of reaction, fusion and vapourization Second law of thermodynamics Entropy Free energy Criterion of spontaneity. 
Chemical Equilibrium 
Law of mass action Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure) Significance of ΔG and ΔG0 in chemical equilibrium Solubility product, common ion effect, pH and buffer solutions Acids and bases (Bronsted and Lewis concepts) Hydrolysis of salts. 
Electrochemical cells and cell reactions Standard electrode potentials Nernst equation and its relation to ΔG Electrochemical series, emf of galvanic cells Faraday’s laws of electrolysis Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law Concentration cells. 

Rates of chemical reactions Order of reactions Rate constant First order reactions Temperature dependence of the rate constant (Arrhenius equation). 

Solid State 
Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), closepacked structure of solids (cubic), packing in fcc, bcc and hcp lattices Nearest neighbours, ionic radii, simple ionic compounds, point defects. 
Raoult’s law Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point. 

Elementary concepts of adsorption (excluding adsorption isotherms) Colloids: types, methods of preparation and general properties Elementary ideas of emulsions, surfactants, and micelles (only definitions and examples). 

Nuclear Chemistry 
Radioactivity Isotopes and isobars Properties of α, β and γ rays Kinetics of radioactive decay (decay series excluded), carbon dating Stability of nuclei with respect to proton neutron ratio Brief discussion on fission and fusion reactions. 
Sections 
Topics 
Isolation/preparation and properties of the following nonmetals 
Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur 
Preparation and properties of the following compounds 
Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium Boron: diborane, boric acid and borax Aluminium: alumina, aluminium chloride and alums Carbon: oxides and oxyacid (carbonic acid) Silicon: silicones, silicates and silicon carbide Nitrogen: oxides, oxyacids and ammonia Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine Oxygen: ozone and hydrogen peroxide Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder Xenon fluorides. 
Transition Elements 3D Series 
Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spinonly magnetic moment Coordination compounds: nomenclature of mononuclear coordination compounds, cistrans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral). 
Preparation and properties of the following compounds 
Oxides and chlorides of tin and lead Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+ Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate. 
Ores and Minerals 
Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver. 
Extractive metallurgy 
Chemical principles and reactions only (industrial details excluded) Carbon reduction method (iron and tin) Self reduction method (copper and lead) Electrolytic reduction method (magnesium and aluminium) Cyanide process (silver and gold). 
Principles of qualitative analysis 
Groups I to V (only Ag+ , Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+) Nitrate, halides (excluding fluoride), sulphate and sulphide. 
Sections 
Topics 
Concepts 
Hybridisation of carbon σ and πbonds Shapes of simple organic molecules Structural and geometrical isomerism Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded) IUPAC nomenclature of simple organic compounds (only) hydrocarbons , monofunctional and bifunctional compounds) Conformations of ethane and butane (Newman projections) Resonance and hyperconjugation Ketoenoltautomerism Determination of empirical and molecular formulae of simple compounds (only combustion method) Hydrogen bonds Definition and their effects on physical properties of alcohols and carboxylic acids Inductive and resonance effects on acidity and basicity of organic acids and bases Polarity and inductive effects in alkyl halides Reactive intermediates produced during homolytic and heterolytic bond cleavage Formation, structure and stability of carbocations, carbanions and free radicals. 
Preparation, properties and reactions of alkanes 
Homologous series, physical properties of alkanes (melting points, boiling points and density) Combustion and halogenation of alkanes Preparation of alkanes by Wurtz reaction and decarboxylation reactions. 
Preparation, properties and reactions of alkenes and alkynes 
Physical properties of alkenes and alkynes (boiling points, density and dipole moments) Acidity of alkynes Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination) Reactions of alkenes with KMnO4 and ozone Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen) Addition reactions of alkynes; Metal acetylides. 
Reactions of benzene 
Structure and aromaticity Electrophilic substitution reactions: halogenation, nitration, sulphonation, FriedelCrafts alkylation and acylation Effect of o, m and pdirecting groups in monosubstituted benzenes. 
Phenols 
Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation) ReimerTieman reaction, Kolbe reaction. 
Characteristic reactions of the following (including those mentioned above) 
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones Ethers: Preparation by Williamson’s Synthesis Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation Aldol condensation, Perkin reaction Cannizzaro reaction Haloform reaction and nucleophilic addition reactions (Grignard addition) Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution). 
Carbohydrates 
Classification Mono and disaccharides (glucose and sucrose) Oxidation, reduction, glycoside formation and hydrolysis of sucrose. 
Amino Acids and Peptides 
General structure (only primary structure for peptides) and physical properties. 
Properties and uses of some important polymers 
Natural rubber, cellulose, nylon, teflon and PVC. 
Practical Organic Chemistry 
Detection of elements (N, S, halogens) Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro Chemical methods of separation of monofunctional organic compounds from binary mixtures. 
Sections 
Topics 
Freehand Drawing 
This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or daytoday life usable objects like furniture, equipment, etc.from memory. 
Geometrical Drawing 
Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles, etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders, etc. 
Threedimensional Perception 
Understanding and appreciation of threedimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory 
Imagination and Aesthetic Sensitivity 
Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application. 
Architectural Awareness 
General interest and awareness of famous architectural creations – both national and international, places and personalities (architects, designers, etc.) in the related domain. 
For detailed syllabus of AAT  Click Here
Crack JEE with AIBased JEE Online Preparation Program(Live Classes, UNLIMITED Mock Tests & More)
Know MoreStudents are provided with the best books for JEE Advanced 2021. Books provided here are based on recommendations of subject matter experts and also referred to by previous year JEE Advanced toppers.
S.No. 
Subject 
Books 
1. 
Physics 

2. 
Chemistry 

3. 
Mathematics 

Candidates preparing for JEE Advanced 2021 must follow a strategic study plan to ensure success in the exam. Candidates are provided here some useful tips to help them prepare for JEE Advanced 2021
Other Relevant Links
JEE Advanced Application Form 2021  Indian Institute of Technology, Kharagpur will release the J...
JEE Advanced 2021 Cutoff for IIT Jodhpur  JoSAA will release the cutoff of JEE Advanced for IIT ...
JEE Advanced 2021 Cutoff for IIT Tirupati  Candidates will be able to know the minimum ranks to ...
JEE Advanced Counselling and Seat Allotment 2021 JoSAA will conduct the counselling and seat all...
JEE Advanced Mock Test 2021  IIT Kharagpur has released the JEE Advanced 2021 mock test at jeead...
Hey,
The key factor to outshine or achieve good score in any exam is the Self Study. No matter how good the coaching and it's materials are if you don't do self study it's all in vain. You need to be focused and keep on practising on regular basis.
It's always said that it's better to study one book multiple times rather than reading many books. Try to follow the same thing. Read the materials or the books you find yourself comfortable with. If you understand the material of you coaching well you should go for that only.
Stick to one and practice as more as possible.
Hope that helps.
All the best.
Thank you
Hello Aspirant,
According to the percentile you have mentioned your rank is expected to be in the range of 113860  127995 , you can check out marks Vs ranks Vs Percentile from the link given below :
https://engineering.careers360.com/articles/jeemainmarksvspercentile
Or
You can also use JEEMain Rank Predictor to predict your rank :
https://engineering.careers360.com/jeemainrankpredictor
So on such rank and category you have some chances to get the enlisted NITs if you have Home state quota for them :
NIT Hamirpur
NIT Goa
NIT Agartala
NIT Nagaland
You can check out previous year's cutoffs from the official website of JOSAA as given below :
https://josaa.nic.in/Result/Result/currentorcr.aspx
Note that the above prediction is made on the basis of latest cutoffs available on official website of JOSAA or CSAB and the cutoffs are bound to change every year depending upon various factors such as the number of candidates appearing in an examination, the number of candidates qualifying an examination, difficulty level of the paper, and so on.
Expected JEEMain 2021 cutoffs to become eligible for JEEAdvance 2021 are as follows :
Common Rank List (CRL)  90 95 Percentile
GENEWS  70 75 Percentile
Other Backward Classes (OBCNCL)  70 75 Percentile
Scheduled Caste (SC)  50 55 Percentile
Scheduled Tribe (ST)  40 45 Percentile
PwD  12 Percentile
So as per the above table you have good chances to get qualified for JEEAdvance 2021 on such percentile and category. But note that in above table it is not the actual cutoff for JEEMain 2021 but expected on the basis of previous year's analysis. You can check out previous year's cutoff trends from the link given below :
https://engineering.careers360.com/articles/jeemaincutoff
So you can use JEEMain College Predictor to predict your chances of admission in different engineering colleges of India on the basis of your JEEMain 2021 result :
https://engineering.careers360.com/jeemaincollegepredictor?icn=QnA&ici=qna_answer
I hope this information helps you.
Good Luck!!
Hello Aspirant,
Hope you are doing well!!
Books you should follow for JEE Advanced are:
Physics:
Concepts of Physics Vol I and II by H.C. Verma
Problems in Physics by S.S. Krotov
IIT Physics by D.C. Pandey
Chemistry:
Organic Chemistry by O. P. Tandon
Physical Chemistry by O. P. Tandon
Concise Inorganic Chemistry by J. D. Lee
Modern Approach to Chemical Calculations by R. C. Mukherjee
Mathematics:
Maths XI & XII by R.D. Sharma
Advanced Problems in Mathematics for JEE (Main & Advanced) by Vikas Gupta & Pankaj Joshi
Course in Mathematics for IITJEE by Tata McGrawHill publications
For more information , I'm providing you a link that will help you:
https://engineering.careers360.com/articles/bestbooksforjeeadvanced
Best Coaching for JEE Advanced are:
Allens
Resonance
Akash
Toppers Academy
Vibrant Academy.
I hope this information will help you.
Feel free to ask any query.
All the best for your bright future ahead.
Hello Aspirant,
See there are two cases, so let us discuss about first case, you are eligible for JEEAdvance 2021 if you have qualified JEEMain 2020 and was unable to attend JEEAdvance 2021 due to either being COVID positive or belonged to any containment zone but on the other hand in normal conditions second case will be there and you are not eligible because maximum attempts allowed for JEEAdvance are two in 2 consecutive years which includes the passing year of class 12th as well. So as you have mentioned that you had passed your class 12th in 2019 then you were eligible only for JEEAdvance 2019 and 2020. For complete details about JEEAdvance eligibility criteria kindly check out the link given below :
https://engineering.careers360.com/articles/jeeadvancedeligibilitycriteria
But yes if you have appeared for JEEMain 2021 as you are eligible for it so you can use JEEMain College Predictor to predict your chances of admission in different engineering colleges of India :
https://engineering.careers360.com/jeemaincollegepredictor?icn=QnA&ici=qna_answer
I hope this information helps you.
Good Luck!!
Regular exam updates, QnA, Predictors, College Applications & Ebooks now on your Mobile