VIT Bhopal University | M.Tech Admissions 2025
M.Tech admissions open @ VIT Bhopal University | Highest CTC 52 LPA | Apply now
GATE Biotechnology Syllabus 2025 (BT) - IIT Roorkee released the GATE 2025 Biotechnology syllabus pdf on the website, gate2025.iitr.ac.in. GATE BT syllabus 2025 consists of topics from different sections like General Aptitude, Engineering Mathematics, General Biology, Genetics, Cellular and Molecular Biology. Fundamentals of Biological Engineering, Bioprocess Engineering Process Biotechnology etc. GATE Biotechnology syllabus 2025 mostly includes topics from the UG level. Aspirants can download the GATE syllabus pdf on this page. Along with the GATE Biotechnology syllabus, candidates must check the exam pattern to plan their preparation. The GATE 2025 question paper will be prepared based on the syllabus of GATE Biotechnology 2025. The authority will conduct the GATE 2025 exam on February 1, 2, 15 & 16, 2025. The Graduate Aptitude Test in Engineering will be held for three hours.
Direct link to download the GATE 2025 BT syllabus
IIT Roorkee published the syllabus of GATE Biotechnology on the official website. Candidates can check the detailed GATE 2025 BT syllabus here.
Chapters | Topics |
GATE GA syllabus for Verbal Aptitude |
|
GATE GA syllabus for Quantitative Aptitude |
|
GATE GA syllabus for Analytical Aptitude |
|
GATE GA syllabus for Spatial Aptitude |
|
The Engineering Mathematics segment within the GATE Biotechnology syllabus is a shared component across diverse Engineering disciplines within the GATE exam. This section encompasses six main areas: Linear Algebra, Calculus, Differential Equations, Analysis of Complex Variables, Probability and Statistics, and Numerical Methods. These topics are elaborated upon as follows.
Sections | Topics |
Linear Algebra | Matrix algebra, systems of linear equations, consistency and rank, Eigenvalues, and Eigenvectors. |
Calculus | Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss, and Green’s theorems. |
Differential equations | First-order equation (linear and nonlinear), second-order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s equations, Initial and boundary value problems, solution of partial differential equations: variable separable method. |
Analysis of complex variables | Analytic functions, Cauchy’s integral theorem, integral formula, Taylor’s and Laurent’s series, residue theorem, and solution of integrals. |
Probability and Statistics | Sampling theorems, conditional probability, mean, median, mode, standard deviation, and variance, random variables: discrete and continuous distributions: normal, Poisson, and binomial distributions. |
Numerical Methods | Matrix inversion, solutions of nonlinear algebraic equations, iterative methods for solving differential equations, numerical integration, regression, and correlation analysis. |
The gate biotechnology syllabus within the field of Biotechnology encompasses several significant subjects, including uncompetitive inhibition, competence, immunization, and numerous others. Let's delve into the topics listed in the table below.
Sections | Topics |
Biochemistry | Biomolecules– structure and function, Biological membranes, molecular motors, action potential and transport processes, Basic concepts and regulation of the metabolism of carbohydrates, lipids, amino acids and nucleic acids, photosynthesis, respiration and electron transport chain. Enzymes– Classification, catalytic and regulatory strategies. Enzyme inhibition– competitive, non-competitive and uncompetitive inhibition. |
Microbiology | Bacterial classification and diversity, Microbial Ecology- microbes in marine, freshwater, and terrestrial ecosystems, Microbial interactions, Viruses- structure and classification, Methods in microbiology, Microbial growth and nutrition, Nitrogen fixation, Microbial diseases and host-pathogen interactions, Antibiotics and antimicrobial resistance. |
Immunology | Innate and adaptive immunity, humoral and cell-mediated immunity, Antibody structure and function, Molecular basis of antibody diversity, T cell, and B cell development, Antigen-antibody reaction, complement, Primary and secondary lymphoid organs, Major histocompatibility complex (MHC), Antigen processing and presentation, Polyclonal and monoclonal antibody, Regulation of immune response, Immune tolerance, hypersensitivity, autoimmunity, Graft versus host reaction, Immunization and vaccines. |
The Genetics, Cellular and Molecular Biology segment of the GATE Biotechnology syllabus 2025 encompasses a range of topics including Genetic disorders, Molecular structure of genes and chromosomes, Extracellular matrix, and more. Here is the complete GATE BT exam syllabus 2025-
Sections | Topics |
Genetics and Evolutionary Biology | Mendelian inheritance, Gene interaction, Complementation, Linkage, recombination and chromosome mapping, Extrachromosomal inheritance, Microbial genetics– transformation, transduction and conjugation, Horizontal gene transfer and transposable elements, Chromosomal variation, Genetic disorders, Population genetics, Epigenetics, Selection and inheritance, Adaptive and neutral evolution, Genetic drift, Species, and speciation. |
Cell Biology | Prokaryotic and eukaryotic cell structure, cell cycle and cell growth control, Cell-cell communication, Cell signalling, and signal transduction, Post-translational modifications, Protein trafficking, Cell death, and autophagy, and Extracellular matrix. |
Molecular Biology | Molecular structure of genes and chromosomes, Mutations and mutagenesis, Regulation of gene expression, Nucleic acid– replication, transcription, splicing, translation and their regulatory mechanisms, Non-coding and microRNA, RNA interference, DNA damage, and repair. |
The Fundamentals of Biological Engineering section of the GATE Biotechnology syllabus includes topics such as electron balance, Conduction and convective heat transfer, Mixing in bioreactors, Laws of thermodynamics, and more. Let's delve into a comprehensive description of the GATE BT syllabus:
Sections | Topics |
Engineering Principles applied to biological systems | Material and energy balances for reactive and non-reactive systems, recycle, bypass and purge processes, Stoichiometry of growth and product formation, Degree of reduction, electron balance, and theoretical oxygen demand. |
Classical thermodynamics and Bioenergetics | Classical thermodynamics and BioenergeticLaws of thermodynamics, Solution thermodynamics, Phase equilibria, reaction equilibria, Ligand binding, Membrane potential, Energetics of metabolic pathways, oxidation and reduction reactions.s |
Transport Processes | Newtonian and non-Newtonian fluids, fluid flow– laminar and turbulent, Mixing in bioreactors, mixing time, Molecular diffusion and film theory, Oxygen transfer and uptake in a bioreactor, kLa and its measurement, Conductive and convective heat transfer, LMTD, overall heat transfer coefficient, Heat exchangers. |
The Bioprocess Engineering and Process Biotechnology segment within the GATE Biotechnology syllabus for 2025 encompasses crucial subjects including Thiele modulus, Filtration, tuning of controllers, and more. Let's take a look at the significant topics addressed in the GATE BT syllabus:
Section | Topics |
Bioreaction Engineering | Rate law, zero and first-order kinetics, Ideal reactors– batch, mixed flow, and plug flow, Enzyme immobilization, diffusion effects – Thiele modulus, effectiveness factor, Damkoehler number, Kinetics of cell growth, substrate utilization, and product formation, Structured and unstructured models, batch, fed-batch, and continuous processes, Microbial and enzyme reactors, Optimization and scale-up. |
Upstream and Downstream Processing | Media formulation and optimization, Sterilization of air and media, Filtration– membrane filtration, ultrafiltration, Centrifugation – high speed and ultra, Cell disruption, Principles of chromatography– ion exchange, gel filtration, hydrophobic interaction, affinity, GC, HPLC and FPLC, extraction, adsorption, and drying. |
Instrumentation and Process Control | Pressure, temperature, and flow measurement devices, Valves, First-order and second-order systems, Feedback and feedforward control, Types of controllers– proportional, derivative, and integral control, tuning of controllers. |
The Plant, Animal, and Microbial Biotechnology section within the GATE Biotechnology syllabus encompasses a range of subjects, including methodology, Plastid transformation, Culture media composition and growth conditions, Biofuels, antibiotics, and more. Here are the significant topics covered in this section:
Section | Topics |
Plants | Totipotency- Regeneration of plants, Plant growth regulators and elicitors, Tissue culture and cell suspension culture system – methodology, the kinetics of growth and nutrient optimization, Production of secondary metabolites, Hairy root culture, Plant products of industrial importance, Artificial seeds, Somaclonal variation, Protoplast, protoplast fusion – somatic hybrid and cybrid, Transgenic plants– direct and indirect methods of gene transfer techniques, Selection marker and reporter gene, Plastid transformation. |
Animals | Culture media composition and growth conditions, Animal cell and tissue preservation, Anchorage and non-anchorage dependent cell culture, Kinetics of cell growth, Micro macro-carrier culture, Hybridoma technology, Stem cell technology, Animal cloning, Transgenic animals, Knock-out and knock-in animals. |
Microbes | Production of biomass and primary/secondary metabolites – Biofuels, bioplastic, industrial enzymes, antibiotics, Large-scale production and purification of recombinant proteins and metabolites, Clinical-, food- and industrial- microbiology, Screening strategies for new products. |
The Recombinant DNA Technology and Other Tools in Biotechnology segment holds significance within the GATE Syllabus for Biotechnology. It encompasses a range of topics, including DNA library, RAPD, RFLP, Enzymatic assays, Gene prediction, UV, visible, and more. Here are the notable subjects covered in the GATE exam syllabus for Biotechnology's DNA Technology and Other Tools section:
Section | Topics |
Recombinant DNA Technology | Restriction and modification enzymes, Vectors – plasmids, bacteriophage and other viral vectors, cosmids, Ti plasmid, bacterial and yeast artificial chromosomes, Expression vectors, cDNA and genomic DNA library, Gene isolation and cloning, strategies for the production of recombinant proteins, Transposons and gene targeting, |
Molecular tools | Polymerase chain reaction, DNA/RNA labelling and sequencing, Southern and northern blotting, In-situ hybridization, DNA fingerprinting, RAPD, RFLP, Site-directed mutagenesis, Gene transfer technologies, CRISPR-Cas, Biosensing, and biosensors. |
Analytical tools | Principles of microscopy– light, electron, fluorescent and confocal, Principles of spectroscopy– UV, visible, CD, IR, fluorescence, FT-IR, MS, NMR, Electrophoresis, Micro-arrays, Enzymatic assays, Immunoassays– ELISA, RIA, immunohistochemistry, immunoblotting, Flow cytometry, Whole-genome, and ChIP-sequencing. |
Computational tools | Bioinformatics resources and search tools, Sequence and structure databases, Sequence analysis– sequence file formats, scoring matrices, alignment, phylogeny, Genomics, proteomics, metabolomics, Gene prediction, Functional annotation, Secondary structure and 3D structure prediction, Knowledge discovery in Biochemical databases, Metagenomics, Metabolic Engineering, and Systems Biology. |
The authority released the GATE BT exam pattern online. Candidates can check the GATE 2025 exam pattern for Biotechnology to know the marking scheme, duration of the test, types of questions, and more. GATE BT question paper comprises 65 questions for 100 marks. The question paper has two sections - General Aptitude and Core Subject. GATE BT exam duration is of three hours.
To prepare for GATE 2025 Biotechnology, candidates should focus on subject-specific preparation by using specialized books and practice materials.
The core subjects of the GATE Biotechnology Syllabus 2025 include Plant, Animal, and Microbial Biotechnology; General Biology; Genetics, Cellular and Molecular Biology; Fundamentals of Biological Engineering; Bioprocess Engineering and Process Biotechnology; Recombinant DNA Technology; and other tools in Biotechnology.
The syllabus of GATE Biotechnology 2025 consists of a total of seven sections, including Engineering Mathematics and core Biotechnology-related subjects.
In the GATE Biotechnology 2025 exam, questions carry either 1 mark or 2 marks.
The GATE Biotechnology Syllabus encompasses a range of subjects including Biochemistry, Microbiology, Genetics, Molecular Biology, Immunology, Recombinant DNA Technology, Bioprocess Engineering, and more.
Aspirants can find the detailed GATE 2025 Biotechnology syllabus on the official website.
Admit Card Date:31 May,2025 - 08 June,2025
Counselling Date:03 June,2025 - 15 July,2025
Hello Ansh,
Whether you can get admission in the Computer Science (CS) or Electronics and Communication Engineering (ECE) branch depends on several key factors:
Entrance Exam Rank/Score : Your performance in entrance exams like JEE Mains, JEE Advanced, state-level exams (like KCET, AP EAMCET, TS EAMCET), or university-specific exams plays a major role. A high rank increases your chances for CS or ECE.
Category and Reservation : SC, ST, OBC, EWS, or other reserved categories may have lower cut-off ranks for CS and ECE branches.
College Preference : Top colleges like IITs, NITs, IIITs, and top private universities have higher cut-offs for CS and ECE. Mid-tier or private colleges may offer more flexibility with lower ranks.
State Quota vs. All India Quota : Home state students often have a better chance under the state quota.
Gender-Based Quotas : Some institutions offer female-only seats or relaxed cut-offs for girls.
If you mention your entrance exam name, rank or percentile, category, and state, I can give a more specific answer.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Hello there,
Yes, you can get admission to M.Tech at CBIT without a GATE score by qualifying through TSPGECET.
You must have a B.Tech or equivalent degree in a related field.
If you have a valid TSPGECET rank, you can apply under the regular counseling process (Category A).
If you do not have a TSPGECET rank, you may apply under Category B (management quota), where admission is based on your qualifying degree marks and seat availability.
M.Tech specializations at CBIT include Computer Science Engineering, Computer Networks and Information Security, Artificial Intelligence and Data Science, and Information Technology.
Cutoff ranks for TSPGECET vary every year depending on competition and seats.
Category B admissions do not have a fixed cutoff; selection depends on merit and seat availability.
For exact cutoffs and seat details, you need to check with CBIT or the Telangana State Council of Higher Education during the admission process.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
GATE BT (Biotechnology) score of 350, you have a good chance of securing admission to Delhi Technological University (DTU) for M.Tech in Biotechnology or related programs.
Eligibility Criteria:
You must have a valid GATE score in Biotechnology (BT) or a related discipline.
A minimum of 60% (or equivalent CGPA) in your B.Tech/B.E (Biotech or related field) from a recognized university.
Cutoff Trends :
DTU's cutoff for GATE BT usually ranges between 300-400 (varies yearly based on competition.
Unfortunately, you've missed the GATE 2025 exam registration deadline, which was initially September 20, 2024, and later extended to October 3, 2024, for regular registration, with a late fee option available until October 7, 2024. Since the exam dates are already scheduled for February 1, 2, 15, and 16, 2025, you won't be able to apply for this year's exam.
However, here are some potential options to consider:
- Prepare for GATE 2026: You can start preparing for the next year's exam, ensuring you meet the eligibility criteria and stay updated on the application process.
- Explore other exams: Look into other entrance exams for postgraduate programs, such as those offered by individual universities or institutions.
- Check eligibility for other programs: If you're interested in pursuing a postgraduate degree, research other programs that don't require GATE scores.
To better prepare for future exams, focus on
- Understanding the syllabus: Familiarize yourself with the exam pattern, syllabus, and marking scheme.
- Creating a study plan: Develop a structured study schedule, covering all relevant topics.
- Practicing with mock tests: Regularly take practice tests to assess your knowledge and identify areas for improvement.
Keep in mind that GATE scores are valid for three years, so if you plan to take the exam in 2026, your score will be valid until 2029.
IITs that accept GATE for M.Tech:
IIT Madras, IIT Delhi, IIT Bombay, IIT Kanpur, IIT Kharagpur, IIT Roorkee, IIT Guwahati, IIT Hyderabad, and others.
NITs that accept GATE for M.Tech:
NIT Trichy, NIT Warangal, NIT Surathkal, NIT Rourkela, NIT Calicut, NIT Durgapur, NIT Jalandhar, NIT Kurukshetra, and more.
Both IITs and NITs use your GATE score for M.Tech admission through online counseling systems like COAP an d CCMT.
A flight attendant ensures passenger safety and comfort during flights. Key duties include conducting safety checks, assisting passengers, serving food and drinks, and managing emergencies. They must be well-trained in safety procedures and customer service. A high school diploma is typically required, followed by rigorous training to qualify for the role.
A Flight Engineer monitors and operates an aircraft’s complex systems like engines, fuel, and hydraulics during flight, ensuring optimal performance and safety. They assist pilots with technical issues, conduct inspections, and maintain records. This role requires strong technical knowledge, problem-solving, and communication skills. Training usually involves a degree in aviation or aerospace engineering and specialised certification.
An Aircrew Officer operates and navigates aircraft, ensuring safe flights and compliance with aviation regulations. Key duties include managing flight systems, conducting pre- and post-flight checks, and adhering to safety standards. The role typically requires working five days a week, with around 120 flight hours monthly. Employment may be contractual or permanent, depending on the airline.
An aerospace engineer designs, develops, tests, and maintains aircraft, spacecraft, and related systems. They apply physics and engineering principles to improve aerospace technologies, often working in aviation, defence, or space sectors. Key tasks include designing components, conducting tests, and performing research. A bachelor’s degree is essential, with higher roles requiring advanced study. The role demands analytical skills, technical knowledge, precision, and effective communication.
An air hostess, or flight attendant, ensures passenger safety and comfort during flights. Responsibilities include safety demonstrations, serving meals, managing the cabin, handling emergencies, and post-flight reporting. The role demands strong communication skills, a calm demeanour, and a service-oriented attitude. It offers opportunities to travel and work in the dynamic aviation and hospitality industry.
An aeronautical engineer designs, develops, tests, and maintains aircraft and related systems. They work on components like engines and wings, ensuring performance, safety, and efficiency. The role involves simulations, flight testing, research, and technological innovation to improve fuel efficiency and reduce noise. Aeronautical engineers collaborate with teams in aerospace companies, government agencies, or research institutions, requiring strong skills in physics, mathematics, and engineering principles.
A Safety Manager ensures workplace safety by developing policies, conducting training, assessing risks, and ensuring regulatory compliance. They investigate incidents, manage workers’ compensation, and handle emergency responses. Working across industries like construction and healthcare, they combine leadership, communication, and problem-solving skills to protect employees and maintain safe environments.
An airline pilot operates aircraft to transport passengers and cargo safely. Responsibilities include pre-flight planning, in-flight operations, team collaboration, and post-flight duties. Pilots work in varying schedules and environments, often with overnight layovers. The demand for airline pilots is expected to grow, driven by retirements and industry expansion. The role requires specialized training and adaptability.
Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues.
A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.
An architect plans and designs buildings, ensuring they are safe, functional, and aesthetically pleasing. They collaborate with clients, engineers, and contractors throughout the construction process. Key skills include creativity, design software proficiency, and knowledge of building codes. In India, a 5-year B.Arch degree and registration with the Council of Architecture are required to practise professionally.
Having a landscape architecture career, you are involved in site analysis, site inventory, land planning, planting design, grading, stormwater management, suitable design, and construction specification. Frederick Law Olmsted, the designer of Central Park in New York introduced the title “landscape architect”. The Australian Institute of Landscape Architects (AILA) proclaims that "Landscape Architects research, plan, design and advise on the stewardship, conservation and sustainability of development of the environment and spaces, both within and beyond the built environment". Therefore, individuals who opt for a career as a landscape architect are those who are educated and experienced in landscape architecture. Students need to pursue various landscape architecture degrees, such as M.Des, M.Plan to become landscape architects. If you have more questions regarding a career as a landscape architect or how to become a landscape architect then you can read the article to get your doubts cleared.
Urban Planning careers revolve around the idea of developing a plan to use the land optimally, without affecting the environment. Urban planning jobs are offered to those candidates who are skilled in making the right use of land to distribute the growing population, to create various communities.
Urban planning careers come with the opportunity to make changes to the existing cities and towns. They identify various community needs and make short and long-term plans accordingly.
A plumber installs, maintains, and repairs water, gas, and waste systems in homes and buildings. Their duties include fixing leaks, installing fixtures, testing systems, ensuring safety compliance, and working with other professionals on projects. They also document repairs and may supervise apprentices. Plumbers play a key role in ensuring public health and the smooth functioning of essential utilities.
Individuals who opt for a career as construction managers have a senior-level management role offered in construction firms. Responsibilities in the construction management career path are assigning tasks to workers, inspecting their work, and coordinating with other professionals including architects, subcontractors, and building services engineers.
Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems.
Individuals who opt for a career as geothermal engineers are the professionals involved in the processing of geothermal energy. The responsibilities of geothermal engineers may vary depending on the workplace location. Those who work in fields design facilities to process and distribute geothermal energy. They oversee the functioning of machinery used in the field.
Energy efficiency engineering is a broad field of engineering which deals with energy efficiency, energy services, facility management, plant engineering, and sustainable energy resources. Energy efficiency engineering is one of the most recent engineering disciplines to emerge. The field combines the knowledge and understanding of physics, chemistry, and mathematics, with economic and environmental engineering practices. The main job of individuals who opt for a career as an energy performance engineer is to find the most efficient and sustainable path to operate buildings and manufacturing processes.
Individuals who opt for a career as energy performance engineers apply their understanding and knowledge to increase efficiency and further develop renewable sources of energy. The energy efficiency engineers also examine the use of energy in those procedures and suggest the ways in which systems can be improved.
A geologist attempts to comprehend the historical backdrop of the planet we live on, all the more likely to anticipate the future and clarify current events. He or she analyses the components, deployments, results, physical characteristics, and past of the planet. A geologist examines the landforms and landscapes of the earth in relation to the geology, climatic, and human processes that have shaped them.
A geologist studies earth procedures, for example, seismic tremors, avalanches, floods, and volcanic eruptions to review land and draw up safe structure plans. When he or she researches earth materials, explores metals and minerals, yet in addition search for oil, petroleum gas, water, and strategies to extricate these.
A career as a Petroleum engineer is concerned with activities related to producing petroleum. These products can be in the form of either crude oil or natural gas. Petroleum engineering also requires the exploration and refinement of petroleum resources. Therefore, a career as a petroleum engineer comes up with oil and gas onshore jobs. There are also desk jobs in the petroleum industry. In layman’s terms, a petroleum engineer is a person who finds the best way to drill and extract oil from oil wells. Individuals who opt for a career as petroleum engineer also tries to find new ways to extract oil in an efficient manner.
A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.
A career as a civil engineer is of great importance for the infrastructural growth of the country. It is one of the most popular professions and there is great professional as well as personal growth in this civil engineering career path. There is job satisfaction in this civil engineering career path, but it also comes with a lot of stress, as there are multiple projects that need to be handled and have to be completed on time. Students should pursue physics, chemistry and mathematics in their 10+2 to become civil engineers.
A career as a Transportation Engineer is someone who takes care of people's safety. He or she is responsible for designing, planning and constructing a safe and secure transportation system. The transportation sector has seen a huge transformation and is growing day by day and improving every day.
As a Transport Engineer, he or she needs to solve complex problems such as accidents, costs, traffic flow, and statistics. A Transport Engineer also collaborates for projects with some other companies.
A Loco Pilot operates trains, ensuring safe and timely transport of passengers or goods. Starting as an Assistant Loco Pilot, one can progress to senior roles with experience. The job demands technical knowledge, focus, and adherence to safety protocols. It involves coordination with train staff and may require working long hours under pressure.
Ranked amongst top 3% universities globally (QS Rankings).
NAAC A++ Accredited | Accorded institution of Eminence by Govt. of India | NIRF Rank #4
Ranked #1 Among all Private Indian Universities in QS Asia Rankings 2025 | Scholarships worth 210 CR
Highest CTC 50 LPA | Average CTC 5.3 LPA | Merit Based Scholarships
M.Tech admissions open @ VIT Bhopal University | Highest CTC 52 LPA | Apply now
100+ Industry collaborations | 10+ Years of legacy