JEE Mains 2025 January 22 Shift 1 Answer Key PDF

Sandwich Theorem - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 64 Questions around this concept.

Solve by difficulty

For each $t \epsilon R$, let $[t]$ be the greatest integer less than or equal to $t$. Then

$
\lim _{x \rightarrow 0} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots .+\left[\frac{15}{x}\right]\right)
$
 

\text { If } \lim _{x \rightarrow 0} \frac{a e^x+b \cos x+c e}{e^{2 x}-2 e^x+1}=4 \text {, then }:

\text { Evaluate: } \lim _{x \rightarrow 0}\left(\frac{1^x+2^x+3^x+\ldots+n^x}{n}\right)^{a / x}:

Which of the following is true for the real valued functions f(x),h(x),g(x) 

\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow-a} g(x)=L, \lim _{x \rightarrow-a} f(x)=N, \lim _{x \rightarrow a} g(x)=N?

The integer \mathrm{n} for which \mathrm{\lim _{x \rightarrow 0}\left\{\frac{(\cos x-1)\left(\cos x-e^2\right)}{x^n}\right\}} is a finite, non-zero real number, is

 

\mathrm{\lim _{n \rightarrow \infty}\left[\sqrt{\left(n^2+n+1\right)}-\left[\sqrt{\left(n^2+n+1\right)}\right]\right)}
where [ ] denotes the greatest integer function:

\mathrm{\lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{r}{\left(n^2+n+r\right)} \text { equals : }}

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

\mathrm{ Assume\, \, that \lim _{\theta \rightarrow-1} f(\theta) exists and \frac{\theta^2+\theta-2}{\theta+3} \leq \frac{f(\theta)}{\theta^2} \leq \frac{\theta^2+2 \theta-1}{\theta+3} }
\mathrm{ holds\, \, for \, \, certain\, \, interval\, \, containing\, \, the \, \, point \, \, \theta=-1 then \lim _{\theta \rightarrow-1} f(\theta) : }

\text{ Evaluate :}\mathrm{\lim _{n \rightarrow \infty} \frac{1}{1+n^2}+\frac{2}{2+n^2}+\ldots .+\frac{n}{n+n^2}}.

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

\text{ Evaluate :}\mathrm{\lim _{x \rightarrow \infty} \frac{x+7 \sin x}{-2 x+13}}  using Sandwich Theorem.

Concepts Covered - 1

Sandwich Theorem

Sandwich Theorem

Sandwich theorem is also known as the squeeze play theorem. It is typically used to find the limit of a function via comparison with two other functions whose limits are known or are easily calculated.

Sandwich Theorem 

Let $f(x), g(x)$ and $h(x)$ be real functions such that $f(x) \leq g(x) \leq h(x)$ for all $x$ in the neighbourhood of $x=a$. If $\lim _{x \rightarrow a} f(x)=l=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=l$.

 

Study it with Videos

Sandwich Theorem

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Sandwich Theorem

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.7

Line : 6

E-books & Sample Papers

Get Answer to all your questions

Back to top