Amrita University B.Tech 2026
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
68 Questions around this concept.
For each $t \epsilon R$, let $[t]$ be the greatest integer less than or equal to $t$. Then
$
\lim _{x \rightarrow 0} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots .+\left[\frac{15}{x}\right]\right)
$
:
:
New: JEE Main 2026 Registration Link | Top 30 Most Repeated Questions
JEE Main Prep: Study Plan | Preparation Tips | High Scoring Chapters and Topics
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session
Which of the following is true for the real valued functions
?
The integer for which
is a finite, non-zero real number, is
where [ ] denotes the greatest integer function:
.
using Sandwich Theorem.
Sandwich Theorem
Sandwich theorem is also known as the squeeze play theorem. It is typically used to find the limit of a function via comparison with two other functions whose limits are known or are easily calculated.
Sandwich Theorem
Let $f(x), g(x)$ and $h(x)$ be real functions such that $f(x) \leq g(x) \leq h(x)$ for all $x$ in the neighbourhood of $x=a$. If $\lim _{x \rightarrow a} f(x)=l=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=l$.

"Stay in the loop. Receive exam news, study resources, and expert advice!"
