JEE Main Answer Key 2026 Session 1 (Feb 4): Download Link for Shift 1, 2 Key PDF

Sandwich Theorem - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 68 Questions around this concept.

Solve by difficulty

For each $t \epsilon R$, let $[t]$ be the greatest integer less than or equal to $t$. Then

$
\lim _{x \rightarrow 0} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots .+\left[\frac{15}{x}\right]\right)
$
 

\text { If } \lim _{x \rightarrow 0} \frac{a e^x+b \cos x+c e}{e^{2 x}-2 e^x+1}=4 \text {, then }:

\text { Evaluate: } \lim _{x \rightarrow 0}\left(\frac{1^x+2^x+3^x+\ldots+n^x}{n}\right)^{a / x}:

New: JEE Main 2026 Session 2 Registration Starts; Apply Now

JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)

JEE Main 2026 Tools: Rank Predictor | College Predictor

Comprehensive Guide: IIT'sNIT'sIIIT's

Which of the following is true for the real valued functions f(x),h(x),g(x) 

\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow-a} g(x)=L, \lim _{x \rightarrow-a} f(x)=N, \lim _{x \rightarrow a} g(x)=N?

The integer \mathrm{n} for which \mathrm{\lim _{x \rightarrow 0}\left\{\frac{(\cos x-1)\left(\cos x-e^2\right)}{x^n}\right\}} is a finite, non-zero real number, is

 

\mathrm{\lim _{n \rightarrow \infty}\left[\sqrt{\left(n^2+n+1\right)}-\left[\sqrt{\left(n^2+n+1\right)}\right]\right)}
where [ ] denotes the greatest integer function:

\mathrm{\lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{r}{\left(n^2+n+r\right)} \text { equals : }}

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

\mathrm{ Assume\, \, that \lim _{\theta \rightarrow-1} f(\theta) exists and \frac{\theta^2+\theta-2}{\theta+3} \leq \frac{f(\theta)}{\theta^2} \leq \frac{\theta^2+2 \theta-1}{\theta+3} }
\mathrm{ holds\, \, for \, \, certain\, \, interval\, \, containing\, \, the \, \, point \, \, \theta=-1 then \lim _{\theta \rightarrow-1} f(\theta) : }

\text{ Evaluate :}\mathrm{\lim _{n \rightarrow \infty} \frac{1}{1+n^2}+\frac{2}{2+n^2}+\ldots .+\frac{n}{n+n^2}}.

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

\text{ Evaluate :}\mathrm{\lim _{x \rightarrow \infty} \frac{x+7 \sin x}{-2 x+13}}  using Sandwich Theorem.

Concepts Covered - 1

Sandwich Theorem

Sandwich Theorem

Sandwich theorem is also known as the squeeze play theorem. It is typically used to find the limit of a function via comparison with two other functions whose limits are known or are easily calculated.

Sandwich Theorem 

Let $f(x), g(x)$ and $h(x)$ be real functions such that $f(x) \leq g(x) \leq h(x)$ for all $x$ in the neighbourhood of $x=a$. If $\lim _{x \rightarrow a} f(x)=l=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=l$.

 

Study it with Videos

Sandwich Theorem

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions