How to Attempt IIT JEE Main and Advanced 2025 - Know success mantra from experts

Sandwich Theorem - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 68 Questions around this concept.

Solve by difficulty

For each $t \epsilon R$, let $[t]$ be the greatest integer less than or equal to $t$. Then

$
\lim _{x \rightarrow 0} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots .+\left[\frac{15}{x}\right]\right)
$
 

\text { If } \lim _{x \rightarrow 0} \frac{a e^x+b \cos x+c e}{e^{2 x}-2 e^x+1}=4 \text {, then }:

\text { Evaluate: } \lim _{x \rightarrow 0}\left(\frac{1^x+2^x+3^x+\ldots+n^x}{n}\right)^{a / x}:

Which of the following is true for the real valued functions f(x),h(x),g(x) 

\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow-a} g(x)=L, \lim _{x \rightarrow-a} f(x)=N, \lim _{x \rightarrow a} g(x)=N?

The integer \mathrm{n} for which \mathrm{\lim _{x \rightarrow 0}\left\{\frac{(\cos x-1)\left(\cos x-e^2\right)}{x^n}\right\}} is a finite, non-zero real number, is

 

\mathrm{\lim _{n \rightarrow \infty}\left[\sqrt{\left(n^2+n+1\right)}-\left[\sqrt{\left(n^2+n+1\right)}\right]\right)}
where [ ] denotes the greatest integer function:

\mathrm{\lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{r}{\left(n^2+n+r\right)} \text { equals : }}

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th July

\mathrm{ Assume\, \, that \lim _{\theta \rightarrow-1} f(\theta) exists and \frac{\theta^2+\theta-2}{\theta+3} \leq \frac{f(\theta)}{\theta^2} \leq \frac{\theta^2+2 \theta-1}{\theta+3} }
\mathrm{ holds\, \, for \, \, certain\, \, interval\, \, containing\, \, the \, \, point \, \, \theta=-1 then \lim _{\theta \rightarrow-1} f(\theta) : }

\text{ Evaluate :}\mathrm{\lim _{n \rightarrow \infty} \frac{1}{1+n^2}+\frac{2}{2+n^2}+\ldots .+\frac{n}{n+n^2}}.

Best Public Engineering Institutes 2025
Discover the top public engineering colleges in India beyond IITs and NITs for 2025. Get insights on placements, eligibility, application process, and more in this comprehensive ebook.
Check Now

\text{ Evaluate :}\mathrm{\lim _{x \rightarrow \infty} \frac{x+7 \sin x}{-2 x+13}}  using Sandwich Theorem.

Concepts Covered - 1

Sandwich Theorem

Sandwich Theorem

Sandwich theorem is also known as the squeeze play theorem. It is typically used to find the limit of a function via comparison with two other functions whose limits are known or are easily calculated.

Sandwich Theorem 

Let $f(x), g(x)$ and $h(x)$ be real functions such that $f(x) \leq g(x) \leq h(x)$ for all $x$ in the neighbourhood of $x=a$. If $\lim _{x \rightarrow a} f(x)=l=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=l$.

 

Study it with Videos

Sandwich Theorem

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top