VIT - VITEEE 2025
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Limit of Algebraic function, Algebraic Function of type ‘infinity/infinity' is considered one of the most asked concept.
343 Questions around this concept.
$\lim _{n \rightarrow \infty} \sum_{r=n}^{2 n}\left(\frac{r^3}{r^4+n^4}\right) \quad$ equals
Evaluate $\lim _{x \rightarrow 1^{-}} \frac{x-1}{|x-1|}$
$\lim _{x \rightarrow 0}\left(\frac{\operatorname{cosec} x-\cot x}{x}\right)_{\mathrm{is}}$
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Choose the correct answer out of 4 options given against each Question
$\lim _{x \rightarrow \frac{\pi}{4}}\left(\frac{\sec ^2 x-2}{\tan x-1}\right)_{\text { }}$ is
If $\lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3}$, then $2 \alpha-\beta$ is equal to:
$\lim _{x \rightarrow 0} \frac{(1+x)^n-1}{x}$ is
$\lim_{n \to \infty } \frac{4^{\frac{1}{n}}-1}{3^\frac{1}{n}-1}$ is equal to
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March
The value of $\lim _{x \rightarrow 2} \frac{x^4-16}{x^5-32}$ is
$\lim _{n \rightarrow \infty} \frac{(n!)^{\frac{1}{n}}}{n}$ equals
$\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}}{\mathrm{ex}+\mathrm{f}}\right)$
Limit of Algebraic function
(b) Factorization Method
In this method, we factorize numerators and denominators. The common factors are canceled out and the rest of the output is the final answer.
Illustration 1:
To evaluate $\lim _{x \rightarrow 2} \frac{x^3-2 x-4}{x^2-3 x+2}$
we can re-write,
$
\Rightarrow \lim _{x \rightarrow 2} \frac{(x-2)\left(x^2+2 x+2\right)}{(x-2)(x-1)} \quad\left[\frac{0}{0} \text { form }\right]
$
$(x-2)$ will cancel out in numerator and denominators
$
\Rightarrow \lim _{x \rightarrow 2} \frac{\left(x^2+2 x+2\right)}{(x-1)}=10
$
(c) Rationalization Method
This method is used when either numerator or denominator or both have fractional powers (like ½, ⅓ etc). After rationalization, the terms are factorized which on cancellation gives the final answer.
Let’s go through an illustration to understand better
Illustration 2:
Evaluate : $\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}$
Rationalizing numerator and denominator we get,
$
\begin{array}{ll}
=\lim _{x \rightarrow a} \frac{a+2 x-3 x}{3 a+x-4 x}\left(\frac{\sqrt{3 a+x}+2 \sqrt{x}}{\sqrt{a+2 x}+\sqrt{3 x}}\right) & \left(\frac{0}{0} \text { form }\right) \\
=\lim _{x \rightarrow a} \frac{a-x}{3(a-x)}\left(\frac{\sqrt{3 a+x}+2 \sqrt{x}}{\sqrt{a+2 x}+\sqrt{3 x}}\right) & \left(\frac{0}{0} \text { form }\right) \\
=\frac{1}{3}\left(\frac{2 \sqrt{a}+2 \sqrt{a}}{\sqrt{3 a}+\sqrt{3 a}}\right) & \\
=\frac{2}{3 \sqrt{3}} &
\end{array}
$
Limit of Algebraic Function Using Standard Result
As we studied in the Binomial Theorem, the binomial expansion for any index
$
(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3 \ldots
$
where, $|x|<1$
When $x$ is infinitely small (approaching zero), we can ignore higher powers of $x$ and can write $(1+x)^n$ $=1+n x$ (approximately).
We will use this fact to evaluate the value of
$
\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}
$
Let $\mathrm{x}=\mathrm{a}+\mathrm{h}$,
$
\begin{aligned}
\therefore \lim _{x \rightarrow a} \frac{x^n-a^n}{x-a} & =\lim _{h \rightarrow 0} \frac{(a+h)^n-a^n}{(a+h)-a} \\
& =\lim _{h \rightarrow 0} \frac{a^n\left\{\left(1+\frac{h}{a}\right)^n-1\right\}}{h} \\
& =a^n \lim _{h \rightarrow 0} \frac{\left\{1+n \frac{h}{a}\right\}-1}{h}
\end{aligned}
$
$\left[\right.$ when $\left.\mathrm{x} \rightarrow 0,(1+x)^n \rightarrow 1+n x\right]$
$
\begin{aligned}
& =a^n \cdot \frac{n}{a}=n a^{n-1} \\
\therefore \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\mathbf{x}^{\mathbf{n}}-\mathbf{a}^{\mathbf{n}}}{\mathbf{x}-\mathbf{a}} & =\mathbf{n a}^{\mathbf{n}-\mathbf{1}}
\end{aligned}
$
Also, $\quad \lim _{x \rightarrow 0} \frac{(1+x)^n-1}{x}=n$
Illustration 1:
If $\lim _{x \rightarrow 3} \frac{x^n-3^n}{x-3}=108$, find the value of $n$ such that $n \in \mathbb{N}$
Solution:
we have $\lim _{\mathrm{x} \rightarrow 3} \frac{\mathrm{x}^{\mathrm{n}}-3^{\mathrm{n}}}{\mathrm{x}-3}=108$,
$
\begin{aligned}
& \Rightarrow \mathrm{n} \cdot 3^{\mathrm{n}-1}=108=4 \times 3^3 \\
& \Rightarrow \mathrm{n}=4
\end{aligned}
$
Algebraic Function of type ‘infinity/infinity’
To find the limit of the type $\mathrm{x} \rightarrow \infty$, write the given expression in the form of $\frac{N}{D}(\mathrm{D} \neq 0),(\mathrm{N}$ is the numerator, D is the denominator). Then divide both N and D by the highest power of x occurring in both N and D to get a meaningful form.
An important result:
If $m, n$ are positive integers and $a_0, b_0 \neq 0$ are non-zero real numbers, then
$
\lim _{x \rightarrow \infty} \frac{a_0 x^m+a_1 x^{m-1}+\ldots+a_{m-1} x+a_m}{b_0 x^n+b_1 x^{n-1}+\ldots+b_{n-1} x+b_n}= \begin{cases}0 & \text { if } m<n \\ \frac{a_0}{b_0} & \text { if } m=n \\ \infty & \text { if } m>n \quad \text { when } a_0 b_0>0 \\ -\infty & \text { if } m>n \text { when } a_0 b_0<0\end{cases}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"