JEE Main 2025 January 22 Shift 1, 2 Paper Analysis Soon - Check Exams Difficulty Level

Limit of Algebraic function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Limit of Algebraic function, Algebraic Function of type ‘infinity/infinity' is considered one of the most asked concept.

  • 331 Questions around this concept.

Solve by difficulty

$\lim _{n \rightarrow \infty} \sum_{r=n}^{2 n}\left(\frac{r^3}{r^4+n^4}\right) \quad$ equals

Evaluate $\lim _{x \rightarrow 1^{-}} \frac{x-1}{|x-1|}$

$\lim _{x \rightarrow 0}\left(\frac{\operatorname{cosec} x-\cot x}{x}\right)_{\mathrm{is}}$


 

If $\lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3}$, then $2 \alpha-\beta$ is equal to:

$\lim _{x \rightarrow 0} \frac{(1+x)^n-1}{x}$ is

 

$\lim _{n \rightarrow \infty} \frac{(n!)^{\frac{1}{n}}}{n}$ equals

$\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}}{\mathrm{ex}+\mathrm{f}}\right)$

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

Concepts Covered - 3

Limit of Algebraic function

Limit of Algebraic function

(b) Factorization Method

In this method, we factorize numerators and denominators. The common factors are canceled out and the rest of the output is the final answer. 

Illustration 1:

To evaluate $\lim _{x \rightarrow 2} \frac{x^3-2 x-4}{x^2-3 x+2}$
we can re-write,

$
\Rightarrow \lim _{x \rightarrow 2} \frac{(x-2)\left(x^2+2 x+2\right)}{(x-2)(x-1)} \quad\left[\frac{0}{0} \text { form }\right]
$

$(x-2)$ will cancel out in numerator and denominators

$
\Rightarrow \lim _{x \rightarrow 2} \frac{\left(x^2+2 x+2\right)}{(x-1)}=10
$

(c) Rationalization Method

This method is used when either numerator or denominator or both have fractional powers (like ½, ⅓ etc). After rationalization, the terms are factorized which on cancellation gives the final answer.

Let’s go through an illustration to understand better 

Illustration 2:

Evaluate : $\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}$
Rationalizing numerator and denominator we get,

$
\begin{array}{ll}
=\lim _{x \rightarrow a} \frac{a+2 x-3 x}{3 a+x-4 x}\left(\frac{\sqrt{3 a+x}+2 \sqrt{x}}{\sqrt{a+2 x}+\sqrt{3 x}}\right) & \left(\frac{0}{0} \text { form }\right) \\
=\lim _{x \rightarrow a} \frac{a-x}{3(a-x)}\left(\frac{\sqrt{3 a+x}+2 \sqrt{x}}{\sqrt{a+2 x}+\sqrt{3 x}}\right) & \left(\frac{0}{0} \text { form }\right) \\
=\frac{1}{3}\left(\frac{2 \sqrt{a}+2 \sqrt{a}}{\sqrt{3 a}+\sqrt{3 a}}\right) & \\
=\frac{2}{3 \sqrt{3}} &
\end{array}
$
 

Limit of Algebraic Function Using Standard Result

Limit of Algebraic Function Using Standard Result

As we studied in the Binomial Theorem, the binomial expansion for any index

$
(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3 \ldots
$

where, $|x|<1$
When $x$ is infinitely small (approaching zero), we can ignore higher powers of $x$ and can write $(1+x)^n$ $=1+n x$ (approximately).

We will use this fact to evaluate the value of

$
\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}
$
Let $\mathrm{x}=\mathrm{a}+\mathrm{h}$,

$
\begin{aligned}
\therefore \lim _{x \rightarrow a} \frac{x^n-a^n}{x-a} & =\lim _{h \rightarrow 0} \frac{(a+h)^n-a^n}{(a+h)-a} \\
& =\lim _{h \rightarrow 0} \frac{a^n\left\{\left(1+\frac{h}{a}\right)^n-1\right\}}{h} \\
& =a^n \lim _{h \rightarrow 0} \frac{\left\{1+n \frac{h}{a}\right\}-1}{h}
\end{aligned}
$

$\left[\right.$ when $\left.\mathrm{x} \rightarrow 0,(1+x)^n \rightarrow 1+n x\right]$

$
\begin{aligned}
& =a^n \cdot \frac{n}{a}=n a^{n-1} \\
\therefore \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\mathbf{x}^{\mathbf{n}}-\mathbf{a}^{\mathbf{n}}}{\mathbf{x}-\mathbf{a}} & =\mathbf{n a}^{\mathbf{n}-\mathbf{1}}
\end{aligned}
$
Also, $\quad \lim _{x \rightarrow 0} \frac{(1+x)^n-1}{x}=n$

Illustration 1: 

If $\lim _{x \rightarrow 3} \frac{x^n-3^n}{x-3}=108$, find the value of $n$ such that $n \in \mathbb{N}$
Solution:
we have $\lim _{\mathrm{x} \rightarrow 3} \frac{\mathrm{x}^{\mathrm{n}}-3^{\mathrm{n}}}{\mathrm{x}-3}=108$,

$
\begin{aligned}
& \Rightarrow \mathrm{n} \cdot 3^{\mathrm{n}-1}=108=4 \times 3^3 \\
& \Rightarrow \mathrm{n}=4
\end{aligned}
$

Algebraic Function of type ‘infinity/infinity'

Algebraic Function of type ‘infinity/infinity

To find the limit of the type $\mathrm{x} \rightarrow \infty$, write the given expression in the form of $\frac{N}{D}(\mathrm{D} \neq 0),(\mathrm{N}$ is the numerator, D is the denominator). Then divide both N and D by the highest power of x occurring in both N and D to get a meaningful form.
An important result:
If $m, n$ are positive integers and $a_0, b_0 \neq 0$ are non-zero real numbers, then

$
\lim _{x \rightarrow \infty} \frac{a_0 x^m+a_1 x^{m-1}+\ldots+a_{m-1} x+a_m}{b_0 x^n+b_1 x^{n-1}+\ldots+b_{n-1} x+b_n}= \begin{cases}0 & \text { if } m<n \\ \frac{a_0}{b_0} & \text { if } m=n \\ \infty & \text { if } m>n \quad \text { when } a_0 b_0>0 \\ -\infty & \text { if } m>n \text { when } a_0 b_0<0\end{cases}
$

Study it with Videos

Limit of Algebraic function
Limit of Algebraic Function Using Standard Result
Algebraic Function of type ‘infinity/infinity'

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Limit of Algebraic function

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.8

Line : 30

Limit of Algebraic Function Using Standard Result

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.13

Line : 34

E-books & Sample Papers

Get Answer to all your questions

Back to top