JEE Main Answer Key 2026 Session 1 (OUT Soon): Download PDF Link for Shift 1, 2

Left-Hand Limits and Right-Hand Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 90 Questions around this concept.

Solve by difficulty

$f(x)=\left[x^2\right]($ where $[]=$. G.I.F)  has

$\begin{matrix} lim\\ x \to 2\end{matrix}\frac{|x-2|}{x-2}=$

Let $f(x)=\begin{aligned} & x^2-1,0<x<2 \\ & 2 x+3,2 \leq x<3\end{aligned}$ the quadratic equation whose roots are $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 2} f(x)$ is

 

New: JEE Main 2026 Session 2 Registration Starts; Apply Now

JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)

JEE Main 2026 Tools: Rank Predictor | College Predictor

Comprehensive Guide: IIT'sNIT'sIIIT's

$\lim _{x \rightarrow 0}\left(\frac{|\sin x|}{x}\right)_{\text {is }}$

$
f(x)=\frac{\sin [x]}{[x]},[x] \neq 0
$

If $\quad 0,[x]=0$ where [.] denotes the greatest integer function, then $\lim _{x \rightarrow 0} f(x)$ is equal to


 

If $\mathrm{f}(\mathrm{x})=|\mathrm{x}| \cdot \sin \mathrm{x}$

If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{\tan x}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$, then at $\mathrm{x}=0, \mathrm{f}(\mathrm{x})$ is

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

The set of points where the function g given by $f(x)=|2 x-1| \sin x$ differentiable is

The value of $\lim _{x \rightarrow 5}\{x\}$ is

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

Concepts Covered - 1

Left-Hand Limits and Right-Hand Limits

Left-Hand Limits and Right-Hand Limits

Continuing from the previous concept, we can approach the input of a function from either side of a value the left or the right.
we had our function as
$f(x)=\frac{(x+1)(x-7))}{(x-7)}, x \neq 7$ which becomes equivalent to the function

$
f(x)=x+1, x \neq 7
$

now, let us observe the values of $f(x)$ nearby $x=7$.

Approaching 7 "from the left" means that the values of input are just less than 7. And if for such values of $x$, the values of $f(x)$ are close to $L$, then $L$ is called the left-hand limit of a function at $x=7$. For this function, 8 is the left-hand limit of the function $f(x)$ at $x=7$.

Approaching 7 "from the right" means that the values of input are just larger than 7. And if for such values of $x$, the values of $f(x)$ are close to $R$, then $R$ is called the right-hand limit of a function at $x=7$. For this function, 8 is the right-hand limit of the function $f(x)$ at $x=7$.

To indicate the left-hand limit, we write $\lim _{x \rightarrow 7^{-}} f(x)=8.7$ - indicates the values that are less than 7 and are infinitesimally close to 7

To indicate the right-hand limit, we write $\lim _{x \rightarrow 7^{+}} f(x)=8.7^{+}$indicates the values that are greater than 7 and are infinitesimally close to 7.

The left-hand and right-hand limits are the same for this function. The point can be defined)
The left-hand limit of a function $\mathrm{f}(\mathrm{x})$ as x approaches a from the left is denoted by $\lim _{x \rightarrow a^{-}} f(x)=L H L$
The right-hand limit of a function $\mathrm{f}(\mathrm{x})$ as x approaches a from the right is denoted by $\lim _{x \rightarrow a^{+}} f(x)=R H L$
Now consider a function, $f(x)=\frac{|x|}{x}$
Let's check the behavior of $f(x)$ in the neighborhood of $x=0$

$
\mathrm{LHL}=\lim _{\mathrm{x} \rightarrow 0^{-}} \frac{|\mathrm{x}|}{\mathrm{x}}
$
As x is just less than 0, we can replace it by $(0-h)$, where $h$ is positive and very close to 0

$
=\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{|0-\mathrm{h}|}{0-\mathrm{h}}
$
So, we have

$
\begin{aligned}
& =\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{|-\mathrm{h}|}{-\mathrm{h}} \\
& =\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{\mathrm{h}}{-\mathrm{h}} \\
& =-1
\end{aligned}
$
$
\begin{aligned}
\mathrm{RHL} & =\lim _{\mathrm{x} \rightarrow 0^{+}} \frac{|\mathrm{x}|}{\mathrm{x}} \\
& =\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{|0+\mathrm{h}|}{0+\mathrm{h}} \\
& =\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{\mathrm{h}}{\mathrm{~h}}=1
\end{aligned}
$
Here, we have RHL $\neq \mathrm{LHL}$

Existence of a limit of a function

From the above example, we can define the existence of a limit
The limit of a function $f(x)$ at $x=a$ exists if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{h \rightarrow 0^{+}} f(a-h)=\lim _{h \rightarrow 0^{+}} f(a+h)$.
i.e., $L H L=R H L$ at $x=a$

Also, notice that the limit of a function can exist even when $f(x)$ is not defined at $x=a$.

Study it with Videos

Left-Hand Limits and Right-Hand Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions