Careers360 Logo
Highest Package of IITs - Placements, NIRF Ranking, Top Recrutiers

Exponential and Logarithmic Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Exponential Limits is considered one the most difficult concept.

  • Logarithmic  Limits is considered one of the most asked concept.

  • 271 Questions around this concept.

Solve by difficulty

Choose the right expansion which is represented by the limit \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}.

Choose the right expansion which is represented by the limit  \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}.

If \lim _{x \rightarrow 0} \frac{(729)^x-(243)^x-(81)^x+9^x+3^x-1}{x^3}=\lambda(\ln 3)^3  \lambda is equal to:

Evaluate \mathrm{\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}-2 x}{\sin ^3 x}}

\mathrm{ \lim _{x \rightarrow 0}\left\{\frac{e^x-e^{\sin x}}{(x-\sin x)}\right\} \text { is equal to }}

\mathrm{\mathrm{\underset{x \rightarrow \/\infty }{\operatorname{Lim}}}\, \, \frac{e^{x^2}-1}{e^{x^2}+1}=1}

\mathrm{ \lim _{x \rightarrow \infty}\left[e^{\sqrt{\left(x^4+1\right)}}-e^{\left(x^2+1\right)}\right]}

Amity University, Noida B.Tech Admissions 2024

Asia's Only University with the Highest US & UK Accreditation

UPES B.Tech Admissions 2024

Ranked #52 among universities in India by NIRF | Highest CTC 50 LPA | 100% Placements

\mathrm{\lim_{x\rightarrow 0}\frac{1}{10} \frac{1-e^{-j5 x}}{1-e^{-j x}}=}     ______________

\mathrm{\lim _{x \rightarrow 0} \frac{e^{x^2}-\cos x}{x^2}} is equal to

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

The value of  \mathrm{\lim _{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}, x \neq 0} is.
 

Concepts Covered - 2

Exponential Limits

Exponential Limits

In order to solve the limit of the function involving exponential function, we use the following standard results

\\\text{(i)}\;\;\;\mathbf{\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a}

Proof:

\\ \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x(\log a)}{1 !}+\frac{x^{2}(\log a)^{2}}{2 !}+\cdots\right)-1}{x} \\\\\text{[using Taylor series expansion of }a^x]\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim _{x \rightarrow 0}\left(\frac{\log a}{1 !}+\frac{x(\log a)^{2}}{2 !}+\cdots\right)\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\log_ea

 \\\text{(ii)}\;\;\;\mathbf{\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1}

 

In General, if \lim_{x\rightarrow a}f(x)=0 , then we have  

\\\text{(a)}\;\;\;\lim _{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\log_ea\\\\\text{(b)}\;\;\;\lim _{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=\log_ee=1

Logarithmic  Limits

Logarithmic  Limits

To evaluate the Logarithmic limit we use the following results:

      \\\mathbf{\lim _{x \rightarrow 0} \frac{\log_e (1+x)}{x}=1}

Proof:

\\\lim _{x \rightarrow 0} \frac{\log_e (1+x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots}{x}\\\\\text{[using Taylor series expansion of }\log_e(1+x)]\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\lim _{x \rightarrow 0}\left(1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots\right)\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=1


In General, if \lim_{x\rightarrow a}f(x)=0 , then we have \lim _{x \rightarrow a} \frac{\log_e (1+f(x))}{f(x)}=1

Study it with Videos

Exponential Limits
Logarithmic  Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Exponential Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 12

Logarithmic  Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top