UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Exponential Limits is considered one the most difficult concept.
Logarithmic Limits is considered one of the most asked concept.
272 Questions around this concept.
Choose the right expansion which is represented by the limit .
Choose the right expansion which is represented by the limit .
If is equal to:
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
Evaluate
______________
is equal to
The value of is.
Exponential Limits
To solve the limit of the function involving the exponential function, we use the following standard results.
(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\mathbf{a}^{\mathbf{x}}-\mathbf{1}}{\mathbf{x}}=\log _{\mathrm{e}} \mathrm{a}$
Proof:
$
\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x(\log a)}{1!}+\frac{x^2(\log a)^2}{2!}+\cdots\right)-1}{x}
$
[using Taylor series expansion of $a^x$ ]
$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\log a}{1!}+\frac{x(\log a)^2}{2!}+\cdots\right) \\
& =\log _e a
\end{aligned}
$
(ii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}}=1$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have
(a) $\lim _{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\log _e a$
(b) $\lim _{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=\log _e e=1$
Logarithmic Limits
To evaluate the Logarithmic limit we use the following results:
$
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\log _e(\mathbf{1 + x})}{\mathbf{x}}=\mathbf{1}
$
Proof:
$
\lim _{x \rightarrow 0} \frac{\log _e(1+x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots}{x}
$
[using Taylor series expansion of $\log _e(1+x)$ ]
$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(1-\frac{x}{2}+\frac{x^2}{3}-\cdots\right) \\
& =1
\end{aligned}
$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have $\lim _{x \rightarrow a} \frac{\log _e(1+f(x))}{f(x)}=1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"