Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Exponential Limits is considered one the most difficult concept.
Logarithmic Limits is considered one of the most asked concept.
275 Questions around this concept.
$\begin{matrix} lim\\h \to 0\end{matrix}\frac{loge(1+2h)-2loge(1+h)}{h^{2}}$
Exponential Limits
To solve the limit of the function involving the exponential function, we use the following standard results.
(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\mathbf{a}^{\mathbf{x}}-\mathbf{1}}{\mathbf{x}}=\log _{\mathrm{e}} \mathrm{a}$
Proof:
$
\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x(\log a)}{1!}+\frac{x^2(\log a)^2}{2!}+\cdots\right)-1}{x}
$
[using Taylor series expansion of $a^x$ ]
$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\log a}{1!}+\frac{x(\log a)^2}{2!}+\cdots\right) \\
& =\log _e a
\end{aligned}
$
(ii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}}=1$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have
(a) $\lim _{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\log _e a$
(b) $\lim _{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=\log _e e=1$
Logarithmic Limits
To evaluate the Logarithmic limit we use the following results:
$
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\log _e(\mathbf{1 + x})}{\mathbf{x}}=\mathbf{1}
$
Proof:
$
\lim _{x \rightarrow 0} \frac{\log _e(1+x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots}{x}
$
[using Taylor series expansion of $\log _e(1+x)$ ]
$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(1-\frac{x}{2}+\frac{x^2}{3}-\cdots\right) \\
& =1
\end{aligned}
$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have $\lim _{x \rightarrow a} \frac{\log _e(1+f(x))}{f(x)}=1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"