JEE Mains 2025 January 22 Shift 1 Answer Key PDF

Exponential and Logarithmic Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Exponential Limits is considered one the most difficult concept.

  • Logarithmic  Limits is considered one of the most asked concept.

  • 275 Questions around this concept.

Solve by difficulty

$\begin{matrix} lim\\h \to 0\end{matrix}\frac{loge(1+2h)-2loge(1+h)}{h^{2}}$

Concepts Covered - 2

Exponential Limits

Exponential Limits

To solve the limit of the function involving the exponential function, we use the following standard results.

(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\mathbf{a}^{\mathbf{x}}-\mathbf{1}}{\mathbf{x}}=\log _{\mathrm{e}} \mathrm{a}$

Proof:

$
\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x(\log a)}{1!}+\frac{x^2(\log a)^2}{2!}+\cdots\right)-1}{x}
$

[using Taylor series expansion of $a^x$ ]

$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\log a}{1!}+\frac{x(\log a)^2}{2!}+\cdots\right) \\
& =\log _e a
\end{aligned}
$

(ii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}}=1$

In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have
(a) $\lim _{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\log _e a$
(b) $\lim _{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=\log _e e=1$

Logarithmic  Limits

Logarithmic  Limits

To evaluate the Logarithmic limit we use the following results:

$
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\log _e(\mathbf{1 + x})}{\mathbf{x}}=\mathbf{1}
$
Proof:

$
\lim _{x \rightarrow 0} \frac{\log _e(1+x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots}{x}
$

[using Taylor series expansion of $\log _e(1+x)$ ]

$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(1-\frac{x}{2}+\frac{x^2}{3}-\cdots\right) \\
& =1
\end{aligned}
$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have $\lim _{x \rightarrow a} \frac{\log _e(1+f(x))}{f(x)}=1$

Study it with Videos

Exponential Limits
Logarithmic  Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Exponential Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 12

Logarithmic  Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top