JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Exponential and Logarithmic Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Exponential Limits is considered one the most difficult concept.

  • Logarithmic  Limits is considered one of the most asked concept.

  • 272 Questions around this concept.

Solve by difficulty

Choose the right expansion which is represented by the limit \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}.

Choose the right expansion which is represented by the limit  \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}.

If \lim _{x \rightarrow 0} \frac{(729)^x-(243)^x-(81)^x+9^x+3^x-1}{x^3}=\lambda(\ln 3)^3  \lambda is equal to:

Evaluate \mathrm{\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}-2 x}{\sin ^3 x}}

\mathrm{ \lim _{x \rightarrow 0}\left\{\frac{e^x-e^{\sin x}}{(x-\sin x)}\right\} \text { is equal to }}

\mathrm{\mathrm{\underset{x \rightarrow \/\infty }{\operatorname{Lim}}}\, \, \frac{e^{x^2}-1}{e^{x^2}+1}=1}

\mathrm{ \lim _{x \rightarrow \infty}\left[e^{\sqrt{\left(x^4+1\right)}}-e^{\left(x^2+1\right)}\right]}

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

\mathrm{\lim_{x\rightarrow 0}\frac{1}{10} \frac{1-e^{-j5 x}}{1-e^{-j x}}=}     ______________

\mathrm{\lim _{x \rightarrow 0} \frac{e^{x^2}-\cos x}{x^2}} is equal to

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

The value of  \mathrm{\lim _{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}, x \neq 0} is.
 

Concepts Covered - 2

Exponential Limits

Exponential Limits

To solve the limit of the function involving the exponential function, we use the following standard results.

(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\mathbf{a}^{\mathbf{x}}-\mathbf{1}}{\mathbf{x}}=\log _{\mathrm{e}} \mathrm{a}$

Proof:

$
\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x(\log a)}{1!}+\frac{x^2(\log a)^2}{2!}+\cdots\right)-1}{x}
$

[using Taylor series expansion of $a^x$ ]

$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\log a}{1!}+\frac{x(\log a)^2}{2!}+\cdots\right) \\
& =\log _e a
\end{aligned}
$

(ii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}}=1$

In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have
(a) $\lim _{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\log _e a$
(b) $\lim _{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=\log _e e=1$

Logarithmic  Limits

Logarithmic  Limits

To evaluate the Logarithmic limit we use the following results:

$
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\log _e(\mathbf{1 + x})}{\mathbf{x}}=\mathbf{1}
$
Proof:

$
\lim _{x \rightarrow 0} \frac{\log _e(1+x)}{x}=\lim _{x \rightarrow 0} \frac{x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots}{x}
$

[using Taylor series expansion of $\log _e(1+x)$ ]

$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(1-\frac{x}{2}+\frac{x^2}{3}-\cdots\right) \\
& =1
\end{aligned}
$
In General, if $\lim _{x \rightarrow a} f(x)=0$, then we have $\lim _{x \rightarrow a} \frac{\log _e(1+f(x))}{f(x)}=1$

Study it with Videos

Exponential Limits
Logarithmic  Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Exponential Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 12

Logarithmic  Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.23

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top