UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 18th May
123 Questions around this concept.
is
Find
The value of so that the fanction
becomes continuous is equal to
The value of $ \lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x} $ is
$
\lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\ldots .+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\ldots . .+n^3\right)-\left(1^2+2^2+\ldots . .+n^2\right)}
$
is equal to:
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 18th May
Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more
If $\lim_{x\to 0}\frac{\ln \left ( 1+x \right )+\alpha \sin x+\frac{x^{2}}{2}}{x^{3}}= \beta \left ( \in R \right )$ ,
then the value of $\alpha +\beta$ is
Define a sequence $\left(a_n\right)$ by $a_1=5, a_n=a_1 a_2 \ldots \ldots a_{n-1}+4$ for $n>1$. Then $\lim _{n \rightarrow \infty} \frac{\sqrt{a_n}}{a_{n-1}}$
Define a sequence $\left\{a_n\right\}_{n \geq 0}$ by $a_n=\sqrt{\frac{1+a_{n-1}}{2}}$ for $n \geq 1, a_0=\cos \theta \neq 1$. Then $\lim _{n \rightarrow \infty} 4^n\left(1-a_n\right)$ equals
Limit Using Expansion (Part 1)
Using the expansions is one of the methods to find the limits. The following expansion formulas which are also known as Taylor series, are very useful in evaluating various limits.
(i) $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \ldots$.
(ii) $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2!}\left(\log _e a\right)^2+\frac{x^3}{3!}\left(\log _e a\right)^3+\ldots \ldots \ldots$
(iii) $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots \ldots \ldots$.
(iv) $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots \ldots \ldots$.
(v) $(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots \ldots$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"