Careers360 Logo
Best JEE Main Coaching Institutes in Chennai with Fees Structure - Classes, Tutorials

Limit Using Expansion - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 109 Questions around this concept.

Solve by difficulty

\mathrm{ \lim _{x \rightarrow \infty}\left(1+\frac{3}{x}+\frac{5}{x^2}\right)^x \text { equals }}

\mathrm{\lim _{n \rightarrow \infty} \prod_{r=2}^n\left(\frac{r^3+1}{r^3-1}\right)} is
 

\mathrm{\lim _{x \rightarrow 0} \frac{3 e^x-x^3-3 x-3}{\tan ^2 x}}

Find  \mathrm{\lim _{x \rightarrow 0} \frac{(1+x)^{1 / m}-(1-x)^{1 / m}}{(1+x)^{1 / n}-(1-x)^{1 / n}}}

The value of \mathrm{f(0)}  so that the fanction \mathrm{f(x)= \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}} becomes continuous is equal to

The integer \mathrm{n} for which \mathrm{\lim _{x \rightarrow 0}\left\{\frac{(\cos x-1)\left(\cos x-e^2\right)}{x^n}\right\}} is a finite, non-zero real number, is

 

Evaluate \mathrm{\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}-2 x}{\sin ^3 x}}

NIELIT University(Govt. of India Institution) B.Tech/ M.Tech

Last Date to Apply : 15th September | Campuses in Agartala, Aizawl, Ajmer, Aurangabad, Calicut, Imphal, Itanagar, Kohima, Gorakhpur, Patna & Srinagar

JSS University Noida Admissions 2024

170+ Recruiters Including Samsung, Zomato, LG, Adobe and many more | Highest CTC 47 LPA

\mathrm{f(x)} is the integral of \mathrm{\frac{2 \sin x-\sin 2 x}{x^3}, x \neq 0, find \lim _{x \rightarrow 0} f^{\prime}(x)}.

\mathrm{\lim _{n \rightarrow \infty} \cos \left[\pi \sqrt{\left(n^2+n\right)}\right] \text { when } n \text { is an integer, is equal to: } }

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

The integer \mathrm{ n} for which  \mathrm{\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^x\right)}{x^n}} is a finite non-zero number is:

Concepts Covered - 2

Limit Using Expansion (Part 1)

Limit Using Expansion (Part 1)

Using the expansions is one of the methods to find the limits. The following expansion formulas which is also known as Taylor series, are very useful in evaluating various limits.

 \\\text { (i) } \quad e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots \ldots\\\\\text { (ii) } \quad a^{x}=1+x\left(\log _{e} a\right)+\frac{x^{2}}{2 !}\left(\log _{e} a\right)^{2}+\frac{x^{3}}{3 !}\left(\log _{e} a\right)^{3}+\ldots \ldots \ldots\\\\ \text { (iii) } \quad \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots \ldots\\\\\text { (iv) } \quad \log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots \ldots \ldots\\\\\text{ (v) } \quad(1+x)^{n}=1+n x+\frac{n(n-1)}{2 !} x^{2}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots \ldots \ldots

Limit Using Expansion (Part 2)

Limit Using Expansion (Part 2)

\\\text { (vi) } \quad \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\ldots \ldots .\\\\\text { (vii) } \quad \cos x=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\ldots \ldots .\\\\\text { (viii) } \quad \tan x=x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\ldots \ldots .\\\\\text { (ix) } \quad \sin ^{-1} x=x+\frac{1^{2} }{3 !}\cdot x^{3}+\frac{1^{2} \cdot 3^{2} }{5 !}\cdot x^{5}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2} }{7 !} \cdot x^{7}\ldots \ldots \ldots\\\\\text { (x) } \quad \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots \ldots

Study it with Videos

Limit Using Expansion (Part 1)
Limit Using Expansion (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Limit Using Expansion (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 22

Limit Using Expansion (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 30

E-books & Sample Papers

Get Answer to all your questions

Back to top