JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Limit Using Expansion - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 108 Questions around this concept.

Solve by difficulty

\mathrm{ \lim _{x \rightarrow \infty}\left(1+\frac{3}{x}+\frac{5}{x^2}\right)^x \text { equals }}

\mathrm{\lim _{n \rightarrow \infty} \prod_{r=2}^n\left(\frac{r^3+1}{r^3-1}\right)} is
 

\mathrm{\lim _{x \rightarrow 0} \frac{3 e^x-x^3-3 x-3}{\tan ^2 x}}

Find  \mathrm{\lim _{x \rightarrow 0} \frac{(1+x)^{1 / m}-(1-x)^{1 / m}}{(1+x)^{1 / n}-(1-x)^{1 / n}}}

The value of \mathrm{f(0)}  so that the fanction \mathrm{f(x)= \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}} becomes continuous is equal to

The integer \mathrm{n} for which \mathrm{\lim _{x \rightarrow 0}\left\{\frac{(\cos x-1)\left(\cos x-e^2\right)}{x^n}\right\}} is a finite, non-zero real number, is

 

Evaluate \mathrm{\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}-2 x}{\sin ^3 x}}

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

\mathrm{f(x)} is the integral of \mathrm{\frac{2 \sin x-\sin 2 x}{x^3}, x \neq 0, find \lim _{x \rightarrow 0} f^{\prime}(x)}.

\mathrm{\lim _{n \rightarrow \infty} \cos \left[\pi \sqrt{\left(n^2+n\right)}\right] \text { when } n \text { is an integer, is equal to: } }

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

The integer \mathrm{ n} for which  \mathrm{\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^x\right)}{x^n}} is a finite non-zero number is:

Concepts Covered - 2

Limit Using Expansion (Part 1)

Limit Using Expansion (Part 1)

Using the expansions is one of the methods to find the limits. The following expansion formulas which are also known as Taylor series, are very useful in evaluating various limits.

 (i) $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \ldots$.
(ii) $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2!}\left(\log _e a\right)^2+\frac{x^3}{3!}\left(\log _e a\right)^3+\ldots \ldots \ldots$
(iii) $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots \ldots \ldots$.
(iv) $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots \ldots \ldots$.
(v) $(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots \ldots$.

Limit Using Expansion (Part 2)
Limit Using Expansion (Part 2) (vi) $\quad \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots \ldots \ldots$ (vii) $\quad \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots \ldots$. (viii) $\quad \tan x=x+\frac{x^3}{3}+\frac{2}{15} x^5+\ldots \ldots$. (ix) $\sin ^{-1} x=x+\frac{1^2}{3!} \cdot x^3+\frac{1^2 \cdot 3^2}{5!} \cdot x^5+\frac{1^2 \cdot 3^2 \cdot 5^2}{7!} \cdot x^7 \ldots \ldots \ldots$ (x) $\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}+\ldots \ldots \ldots$.

Study it with Videos

Limit Using Expansion (Part 1)
Limit Using Expansion (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Limit Using Expansion (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 22

Limit Using Expansion (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 30

E-books & Sample Papers

Get Answer to all your questions

Back to top