JEE Main 2026 January 24 Shift 2 Question Paper with Solutions PDF

Limit Using Expansion - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 124 Questions around this concept.

Solve by difficulty

\mathrm{ \lim _{x \rightarrow \infty}\left(1+\frac{3}{x}+\frac{5}{x^2}\right)^x \text { equals }}

\mathrm{\lim _{n \rightarrow \infty} \prod_{r=2}^n\left(\frac{r^3+1}{r^3-1}\right)} is
 

\mathrm{\lim _{x \rightarrow 0} \frac{3 e^x-x^3-3 x-3}{\tan ^2 x}}

JEE Main Memory Based Ques & Sol's: Jan 23: Shift-2 | Shift-1 | Jan 22: Shift-2 | Shift-1 | All Shift

JEE Main 2026: Admit Card Link | Rank Predictor | College PredictorLive Analysis (Jan 23- Shift 2)

JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions

JEE Main QP & Mock:  PYQ's (10 Years) | Chapter Wise PYQsMock Test Series

Find  \mathrm{\lim _{x \rightarrow 0} \frac{(1+x)^{1 / m}-(1-x)^{1 / m}}{(1+x)^{1 / n}-(1-x)^{1 / n}}}

The value of \mathrm{f(0)}  so that the fanction \mathrm{f(x)= \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}} becomes continuous is equal to

The value of $ \lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x} $ is

$
\lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\ldots .+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\ldots . .+n^3\right)-\left(1^2+2^2+\ldots . .+n^2\right)}
$
is equal to:

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

If  $\lim_{x\to 0}\frac{\ln \left ( 1+x \right )+\alpha \sin x+\frac{x^{2}}{2}}{x^{3}}= \beta \left ( \in R \right )$ ,

then the value of  $\alpha +\beta$  is 

Define a sequence $\left(a_n\right)$ by $a_1=5, a_n=a_1 a_2 \ldots \ldots a_{n-1}+4$ for $n>1$. Then $\lim _{n \rightarrow \infty} \frac{\sqrt{a_n}}{a_{n-1}}$

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

Define a sequence $\left\{a_n\right\}_{n \geq 0}$ by $a_n=\sqrt{\frac{1+a_{n-1}}{2}}$ for $n \geq 1, a_0=\cos \theta \neq 1$. Then $\lim _{n \rightarrow \infty} 4^n\left(1-a_n\right)$ equals

Concepts Covered - 2

Limit Using Expansion (Part 1)

Limit Using Expansion (Part 1)

Using the expansions is one of the methods to find the limits. The following expansion formulas which are also known as Taylor series, are very useful in evaluating various limits.

 (i) $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \ldots$.
(ii) $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2!}\left(\log _e a\right)^2+\frac{x^3}{3!}\left(\log _e a\right)^3+\ldots \ldots \ldots$
(iii) $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots \ldots \ldots$.
(iv) $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots \ldots \ldots$.
(v) $(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots \ldots$.

Limit Using Expansion (Part 2)
Limit Using Expansion (Part 2) (vi) $\quad \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots \ldots \ldots$ (vii) $\quad \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots \ldots$. (viii) $\quad \tan x=x+\frac{x^3}{3}+\frac{2}{15} x^5+\ldots \ldots$. (ix) $\sin ^{-1} x=x+\frac{1^2}{3!} \cdot x^3+\frac{1^2 \cdot 3^2}{5!} \cdot x^5+\frac{1^2 \cdot 3^2 \cdot 5^2}{7!} \cdot x^7 \ldots \ldots \ldots$ (x) $\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}+\ldots \ldots \ldots$.

Study it with Videos

Limit Using Expansion (Part 1)
Limit Using Expansion (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Limit Using Expansion (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 22

Limit Using Expansion (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.15

Line : 30

E-books & Sample Papers

Get Answer to all your questions