Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
124 Questions around this concept.
is
JEE Main Memory Based Ques & Sol's: Jan 23: Shift-2 | Shift-1 | Jan 22: Shift-2 | Shift-1 | All Shift
JEE Main 2026: Admit Card Link | Rank Predictor | College Predictor | Live Analysis (Jan 23- Shift 2)
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: PYQ's (10 Years) | Chapter Wise PYQs | Mock Test Series
Find
The value of so that the fanction
becomes continuous is equal to
The value of $ \lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x} $ is
$
\lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\ldots .+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\ldots . .+n^3\right)-\left(1^2+2^2+\ldots . .+n^2\right)}
$
is equal to:
If $\lim_{x\to 0}\frac{\ln \left ( 1+x \right )+\alpha \sin x+\frac{x^{2}}{2}}{x^{3}}= \beta \left ( \in R \right )$ ,
then the value of $\alpha +\beta$ is
Define a sequence $\left(a_n\right)$ by $a_1=5, a_n=a_1 a_2 \ldots \ldots a_{n-1}+4$ for $n>1$. Then $\lim _{n \rightarrow \infty} \frac{\sqrt{a_n}}{a_{n-1}}$
Define a sequence $\left\{a_n\right\}_{n \geq 0}$ by $a_n=\sqrt{\frac{1+a_{n-1}}{2}}$ for $n \geq 1, a_0=\cos \theta \neq 1$. Then $\lim _{n \rightarrow \infty} 4^n\left(1-a_n\right)$ equals
Limit Using Expansion (Part 1)
Using the expansions is one of the methods to find the limits. The following expansion formulas which are also known as Taylor series, are very useful in evaluating various limits.
(i) $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \ldots$.
(ii) $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2!}\left(\log _e a\right)^2+\frac{x^3}{3!}\left(\log _e a\right)^3+\ldots \ldots \ldots$
(iii) $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots \ldots \ldots$.
(iv) $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots \ldots \ldots$.
(v) $(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots \ldots$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"
