Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Limit of Indeterminate Form and Algebraic limit is considered one the most difficult concept.
98 Questions around this concept.
$\lim _{x \rightarrow 0} \frac{x^2 \cos x}{1-\cos x}$ is
Limit of Indeterminate Form and Algebraic limit
If we directly substitute $\mathrm{x}=\mathrm{a}$ in $\mathrm{f}(\mathrm{x})$ while evaluating $\lim _{x \rightarrow a} f(x)$, and will get one of the seven following forms $\frac{0}{0}, \frac{\infty}{\infty}, \infty\infty, 1^{\infty}, 0^0, \infty^0, \infty \times 0$ then it is called indeterminate form.
For example,
(i) $\lim _{x \rightarrow 2} \frac{x^24}{x2}=\frac{0}{0}$ indeterminate form.
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}$ indeterminate form.
(iii) $\lim _{x \rightarrow \pi / 2}(\tan x)^{\cos x}=\infty^0$ indeterminate form.
Note:
1. $\frac{0}{0}$ form means the numerator and denominator are both tending to 0 (AND NOT exactly 0 )
Eg, $\lim _{x \rightarrow 0^{+}} \frac{[x]}{x}$, when we input the values of x close to $0($ and $\mathrm{x}>0$ ), then the denominator is tending to 0, but numerator values are not tending to 0 BUT numerator is exactly 0. So this is not $\frac{0}{0}$ form.
2. We can convert one indeterminate form into another and vice versa.
We will divide the problems of finding limits into five categories, which are
Limit of Algebraic function
Trigonometric Limit
Logarithmic limit
Exponential limit
Miscellaneous forms
One by one we will discuss all of these.
1. Limit of Algebraic function
(a) Direct Substitution Method
To find $\lim _{x \rightarrow a} f(x)$, directly substitute the value of the limit of the variable. (i.e. substitute $x=a$ ) in the expression $\mathrm{f}(\mathrm{x})$
If $f(a)$ is finite then $L=f(a)$
If $f(a)$ is undefined then the limit does not exist.
If $\mathrm{f}(\mathrm{a})$ is indeterminate then this method fails.
(i) $\lim _{x \rightarrow 3}(x(x+1))=3(3+1)=12$
(ii) $\lim _{x \rightarrow 1}\left(\frac{x^2+1}{x+100}\right)=\frac{1+1}{1+100}=\frac{2}{101}$
(iii) $\lim _{x \rightarrow1}\left(1+x+x^2+\ldots+x^{10}\right)=1+(1)+(1)^2+\ldots+(1)^{10}=1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"