Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
ApplyRecognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
Limits of the form (1 power infinity) is considered one the most difficult concept.
203 Questions around this concept.
If then the values of a and b are
Let then log p
is equal to :
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025 Memory Based Question: Jan 22, 23, 24, 28 & 29 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
$\begin{matrix} lim\\x \to 0\end{matrix}\frac{(1+x)^{1/x}-e}{x} equals$
Limits of the form 1∞ (1 power infinity)
To find the limit of the form $1^{\infty}$, we will use the following results
If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
Then,
$
\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}=e^{\lim _{x \rightarrow a} \frac{f(x)}{g(x)}}
$
Or
When, $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)=\infty$
Then,
$
\begin{aligned}
\lim _{x \rightarrow a}[f(x)]^{g(x)} & =\lim _{x \rightarrow a}[1+(f(x)-1)]^{g(x)} \\
& =e^{\lim _{x \rightarrow a}(f(x)-1) g(x)}
\end{aligned}
$
Proof:
Let $L=\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}$
Taking logs of both sides
$
\begin{aligned}
& \log (L)=\log \left(\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}\right) \\
& \log (L)=\lim _{x \rightarrow a} \frac{1}{g(x)} \log (1+f(x)) \\
& \log (L)=\lim _{x \rightarrow a} \frac{1}{g(x)}\left(\frac{\log (1+f(x))}{f(x)}\right) \cdot f(x)
\end{aligned}
$
As $\mathrm{f}(\mathrm{x})$ is tending to 0 , so
$
\begin{aligned}
& \log (L)=\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \\
& L=e^{\lim _{x \rightarrow a}} \frac{\frac{f(x)}{g(x)}}{2}
\end{aligned}
$
Some particular cases
(a) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$
(b) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e$
(c) $\lim _{x \rightarrow 0}(1+c x)^{\frac{1}{x}}=e^c$
(d) $\lim _{x \rightarrow \infty}\left(1+\frac{c}{x}\right)^x=e^c$
"Stay in the loop. Receive exam news, study resources, and expert advice!"