JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Limits of the form (1 power infinity) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Limits of the form (1 power infinity) is considered one the most difficult concept.

  • 196 Questions around this concept.

Solve by difficulty

\lim_{x\rightarrow \infty }\left ( \frac{x^{2}+5x+3}{x^{2}+x+3} \right )^{\frac{1}{x}}

If \lim_{x\rightarrow \infty }\left ( 1+\frac{a}{x}+\frac{b}{x^{2}} \right )^{2x}= e^{2}, then the values of a and b are

Let p= \lim_{x\rightarrow 0+}\left ( 1+\tan ^{2} \sqrt{x}\right )^{\frac{1}{2x}}then  log p
is equal to :

Concepts Covered - 1

Limits of the form (1 power infinity)

Limits of the form 1 (1 power infinity)

To find the limit of the form $1^{\infty}$, we will use the following results
If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
Then,

$
\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}=e^{\lim _{x \rightarrow a} \frac{f(x)}{g(x)}}
$
Or
When, $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)=\infty$
Then,

$
\begin{aligned}
\lim _{x \rightarrow a}[f(x)]^{g(x)} & =\lim _{x \rightarrow a}[1+(f(x)-1)]^{g(x)} \\
& =e^{\lim _{x \rightarrow a}(f(x)-1) g(x)}
\end{aligned}
$

Proof: 

Let $L=\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}$
Taking logs of both sides

$
\begin{aligned}
& \log (L)=\log \left(\lim _{x \rightarrow a}[1+f(x)]^{\frac{1}{g(x)}}\right) \\
& \log (L)=\lim _{x \rightarrow a} \frac{1}{g(x)} \log (1+f(x)) \\
& \log (L)=\lim _{x \rightarrow a} \frac{1}{g(x)}\left(\frac{\log (1+f(x))}{f(x)}\right) \cdot f(x)
\end{aligned}
$
As $\mathrm{f}(\mathrm{x})$ is tending to 0 , so

$
\begin{aligned}
& \log (L)=\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \\
& L=e^{\lim _{x \rightarrow a}} \frac{\frac{f(x)}{g(x)}}{2}
\end{aligned}
$

Some particular cases  

(a) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$
(b) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e$
(c) $\lim _{x \rightarrow 0}(1+c x)^{\frac{1}{x}}=e^c$
(d) $\lim _{x \rightarrow \infty}\left(1+\frac{c}{x}\right)^x=e^c$

Study it with Videos

Limits of the form (1 power infinity)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Limits of the form (1 power infinity)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.26

Line : 32

E-books & Sample Papers

Get Answer to all your questions

Back to top