Careers360 Logo
UP BTech Admission 2024 (Started): Dates, Application Form, Counselling, Seat Allotment, Merit List

Limits of the form (1 power infinity) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Limits of the form (1 power infinity) is considered one the most difficult concept.

  • 195 Questions around this concept.

Solve by difficulty

\lim_{x\rightarrow \infty }\left ( \frac{x^{2}+5x+3}{x^{2}+x+3} \right )^{\frac{1}{x}}

If \lim_{x\rightarrow \infty }\left ( 1+\frac{a}{x}+\frac{b}{x^{2}} \right )^{2x}= e^{2}, then the values of a and b are

Let p= \lim_{x\rightarrow 0+}\left ( 1+\tan ^{2} \sqrt{x}\right )^{\frac{1}{2x}}then  log p
is equal to :

Concepts Covered - 1

Limits of the form (1 power infinity)

Limits of the form 1 (1 power infinity)

To find the limit of the form 1, we will use the following results  

If \lim_{x\rightarrow a}\;f(x)=\lim_{x\rightarrow a}\;g(x)=0


\lim_{x\rightarrow a}\;\left [1+f(x) \right ]^{\frac{1}{g(x)}}=e^{\lim_{\;x\rightarrow a}\frac{f(x)}{g(x)}} .


When,  \lim_{x\rightarrow a}\;f(x)=1 and \lim_{x\rightarrow a}\;g(x)=\infty


\\\lim_{x\rightarrow a}\;\left [f(x) \right ]^{{g(x)}}=\lim_{x\rightarrow a}\;\left [1+(f(x)-1) \right ]^{{g(x)}}\\\\\text{}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=e^{\lim_{\;x\rightarrow a}{\left (f(x)-1 \right )}{g(x)}}



Let L=\lim_{x\rightarrow a}\;\left [1+f(x) \right ]^{\frac{1}{g(x)}}

Taking log of both sides

log(L)=log\left( \lim_{x\rightarrow a}\;\left [1+f(x) \right ]^{\frac{1}{g(x)}}\right)

log(L)=\lim_{x\rightarrow a}\frac{1}{g(x)}log\left( \;1+f(x)\right)

log(L)=\lim_{x\rightarrow a}\frac{1}{g(x)}\left(\frac{log\left( \;1+f(x)\right)}{f(x)}\right).f(x)

As f(x) is tending to 0, so

log(L)=\lim_{x\rightarrow a}\frac{f(x)}{g(x)}

L=e^{\lim_{x\rightarrow a}\frac{f(x)}{g(x)}}



Some particular cases  

\\\text{(a)}\;\;\;\lim_{x\rightarrow 0}\;(1+x)^{\frac{1}{x}}=e\\\\\text{(b)}\;\;\;\lim_{x\rightarrow \infty}\;\left (1+\frac{1}{x} \right )^{x}=e\\\\\text{(c)}\;\;\;\lim_{x\rightarrow 0}\;(1+cx)^{\frac{1}{x}}=e^c\\\\\text{(d)}\;\;\;\lim_{x\rightarrow \infty}\;\left (1+\frac{c}{x} \right )^{x}=e^c

Study it with Videos

Limits of the form (1 power infinity)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top