Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Algebra of Limits is considered one of the most asked concept.
66 Questions around this concept.
$\begin{matrix} lim\\x \to 1\end{matrix}(3x^{2}+4x+5)=$
$\lim_{x \to b}\frac{\sqrt{x-a}-\sqrt{b-a}}{x^{2}-b^{2}}$
Algebra of Limits
Let $f(x)$ and $g(x)$ be defined for all $x \neq$ a over some open interval containing a. Assume that $L$ and $M$ are real numbers such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Let c be a constant. Then, each of the following statements holds:
Sum law for limits : $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M$
Difference law for limits : $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M$
Constant multiple law for $\operatorname{limits}^{\lim } \lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L$
Product law for limits : $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$
Quotient law for limits: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}$ for $M \neq 0$
Power law for limits : $\lim _{x \rightarrow a}(f(x))^n=\left(\lim _{x \rightarrow a} f(x)\right)^n=L^n$ for every positive integer $n$ Composition law of limit: $\lim _{x \rightarrow a}(f o g)(x)=f\left(\lim _{x \rightarrow a} g(x)\right)=f(M)$, only if $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{g}(\mathrm{x})=\mathrm{M}$.
If $\lim _{x \rightarrow a} f(x)=+\infty$ or $-\infty$, then $\lim _{x \rightarrow a} \frac{1}{f(x)}=0$
"Stay in the loop. Receive exam news, study resources, and expert advice!"