JEE Main 2025 April 4 Shift 1 Question Paper with Solutions Soon - Download PDF

Algebra of Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Algebra of Limits is considered one of the most asked concept.

  • 74 Questions around this concept.

Solve by difficulty

$\begin{matrix} lim\\x \to 1\end{matrix}(3x^{2}+4x+5)=$

$\lim_{x \to b}\frac{\sqrt{x-a}-\sqrt{b-a}}{x^{2}-b^{2}}$

The value of $\lim _{x \rightarrow 0}(1+\tan x)^{1 / x}$ equals

 

Let $a>0$ be a real number. Then the limit $\lim _{x \rightarrow 2} \frac{a^x+a^{3-x}-\left(a^2+a\right)}{a^{3-x}-a^{\frac{x}{2}}}$ is

Concepts Covered - 1

Algebra of Limits

Algebra of Limits

Let $f(x)$ and $g(x)$ be defined for all $x \neq$ a over some open interval containing a. Assume that $L$ and $M$ are real numbers such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Let c be a constant. Then, each of the following statements holds:

Sum law for limits : $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M$
Difference law for limits : $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M$
Constant multiple law for $\operatorname{limits}^{\lim } \lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L$
Product law for limits : $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$

Quotient law for limits: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}$ for $M \neq 0$
Power law for limits : $\lim _{x \rightarrow a}(f(x))^n=\left(\lim _{x \rightarrow a} f(x)\right)^n=L^n$ for every positive integer $n$ Composition law of limit: $\lim _{x \rightarrow a}(f o g)(x)=f\left(\lim _{x \rightarrow a} g(x)\right)=f(M)$, only if $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{g}(\mathrm{x})=\mathrm{M}$.

If $\lim _{x \rightarrow a} f(x)=+\infty$ or $-\infty$, then $\lim _{x \rightarrow a} \frac{1}{f(x)}=0$

Study it with Videos

Algebra of Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top