JEE Main 2025 April 3 Exam Analysis: Check Shift-Wise Paper Difficulty Level

Algebra of Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Algebra of Limits is considered one of the most asked concept.

  • 74 Questions around this concept.

Solve by difficulty

$\begin{matrix} lim\\x \to 1\end{matrix}(3x^{2}+4x+5)=$

$\lim_{x \to b}\frac{\sqrt{x-a}-\sqrt{b-a}}{x^{2}-b^{2}}$

The value of $\lim _{x \rightarrow 0}(1+\tan x)^{1 / x}$ equals

 

JEE Main Session 2 Memory Based Questions: April 2- Shift 1 | Shift-2

JEE Main 2025: Mock Tests | PYQsRank PredictorCollege Predictor | Admit Card Link

New: Meet Careers360 experts in your city | Official Question Papee-Session 1

Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT

Let $a>0$ be a real number. Then the limit $\lim _{x \rightarrow 2} \frac{a^x+a^{3-x}-\left(a^2+a\right)}{a^{3-x}-a^{\frac{x}{2}}}$ is

Concepts Covered - 1

Algebra of Limits

Algebra of Limits

Let $f(x)$ and $g(x)$ be defined for all $x \neq$ a over some open interval containing a. Assume that $L$ and $M$ are real numbers such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Let c be a constant. Then, each of the following statements holds:

Sum law for limits : $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M$
Difference law for limits : $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M$
Constant multiple law for $\operatorname{limits}^{\lim } \lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L$
Product law for limits : $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$

Quotient law for limits: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}$ for $M \neq 0$
Power law for limits : $\lim _{x \rightarrow a}(f(x))^n=\left(\lim _{x \rightarrow a} f(x)\right)^n=L^n$ for every positive integer $n$ Composition law of limit: $\lim _{x \rightarrow a}(f o g)(x)=f\left(\lim _{x \rightarrow a} g(x)\right)=f(M)$, only if $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{g}(\mathrm{x})=\mathrm{M}$.

If $\lim _{x \rightarrow a} f(x)=+\infty$ or $-\infty$, then $\lim _{x \rightarrow a} \frac{1}{f(x)}=0$

Study it with Videos

Algebra of Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Algebra of Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.5

Line : 17

E-books & Sample Papers

Get Answer to all your questions

Back to top