NITs Cutoff for B.Tech Industrial & Production Engineering 2025 - Opening and Closing Ranks

Algebra of Limits - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Algebra of Limits is considered one of the most asked concept.

  • 54 Questions around this concept.

Solve by difficulty

The value of the \lim _{t \rightarrow 1} \frac{t-t^2}{\sqrt{1+\log _2 t}-1} is equal to:

 

Using the power law for limits evaluate \lim_{x\rightarrow -2}\left ( \frac{x^{3}-2}{x^{3}+14x^{2}+2} \right )^{2}.

The set of all values of a for which \lim _{x \rightarrow a}([x-5]-[2 x+2])=0 where [\propto] denotes the greatest integer less than or equal to \alpha is equal to

Let f, g and h be the real valued functions defined on \mathbb{R} as
f(x)=\left\{\begin{array}{cl}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}, g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.\right.
and \mathrm{h}(\mathrm{x})=2[\mathrm{x}]-\mathrm{f}(\mathrm{x}),where [\mathrm{x}] is the greatest integer \leq \mathrm{x}.
Then the value of \lim _{x \rightarrow 1} g(h(x-1)) is

If \alpha>\beta>0 \ \text{are the roots of the equation a }x^2+b x+1=0, and \lim _{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^2+b x+a\right)}{2(1-a x)^2}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right), \text{then k is equal to}

Let \mathrm{a_{n+1}=\sqrt{\left(2+a_n\right)}, n=1,2,3, \ldots \ldots\: and\: \: a_1=3}, then the value of \mathrm{\lim _{n \rightarrow a} a_n}  is............

If \mathrm{f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2}, then the value of \mathrm{\lim _{x \rightarrow a} \frac{g(x) f(a)-g(a) f(x)}{x-a}} is equal to .......

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita University B.Tech 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

If \mathrm{f(x)=\cot ^{-1}\left(\frac{2 x}{1-x^2}\right) and \: g(x)=\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), then\: \: \lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}\left(0<a<\frac{1}{2}\right)} is ......

Let f: R \rightarrow[0, \infty) be such that \lim _{x \rightarrow 5} f(x) exists and \lim _{x \rightarrow 5} \frac{f(x)^2-9}{\sqrt{|x-5|}}=0 Then \lim _{x \rightarrow 5} f(x) equals to :

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

Concepts Covered - 1

Algebra of Limits

Algebra of Limits

Let f(x) and g(x) be defined for all x ≠ a over some open interval containing a. Assume that L and M are real numbers such that \lim _{x \rightarrow a} f(x)=L   and \lim _{x \rightarrow a} g(x)=M. Let c be a constant. Then, each of the following statements hold:
 

\\\mathrm{ { \mathbf{Sum \;law \;for \;limits}: }} \lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M\\\\\mathrm { \mathbf{Difference\;law\; for\; limits: }} \lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M\\\\\mathrm { \mathbf{Constant\; multiple\; law \;for\; limits:} } \lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L\\\\\mathrm { \mathbf{Product \;law\; for \;limits:} } \lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M


\\\mathrm { \mathbf{Quotient\; law \;for \;limits: }} \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M} \text { for } M \neq 0\\\\\\\mathrm { \mathbf{Power \;law \;for \;limits:} } \lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=L^{n} \text { for every positive integer } n\\\\\mathrm{\mathbf{Composition\;law\;of\;limit:}}\lim_{x\rightarrow a}(fog)(x)=f\left ( \lim_{x\rightarrow a}g(x) \right )=f(M), \text{only if f(x) is }\\\text{continuous at g(x)=M.}\\\\\mathrm{\mathbf{If}\;{lim_{x\rightarrow a}f(x)=+\infty}\;\mathbf{or}-\infty,\;\mathbf{then}\;\lim_{x\rightarrow a}\frac{1}{f(x)}=0}

Study it with Videos

Algebra of Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Algebra of Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.5

Line : 17

E-books & Sample Papers

Get Answer to all your questions

Back to top