Jamia Millia Islamia JEE Main Cutoff 2025 - JMI JEE BTech Admission Marks

Limits of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Trigonometric Limits is considered one the most difficult concept.

  • 642 Questions around this concept.

Solve by difficulty

\lim_{x\rightarrow \frac{\pi }{2}}\: \: \frac{\cot x-\cos x}{\left ( \pi -2x \right )^{3}}equals:

\lim_{x\rightarrow 0}\frac{\sin \left ( \pi \cos ^{2}x \right )}{x^{2}}   is equal to :

if f(x) is continuous and f(\frac{9}{2})=\frac{2}{9}, then \lim_{x\rightarrow 0}f\left ( \frac{1-\cos 3x}{x^{2}} \right )  is equal to :

\lim_{x\rightarrow 2}\left ( \frac{\sqrt{1-\cos \left \{ 2(x-2) \right \}}}{x-2} \right )

If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :

$\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{x^2}$ equals

$\lim _{x \rightarrow 0} \frac{\sin 8 x}{\tan 3 x}$ equals

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

Vishwa Vishwani BS Computer Science Admissions 2025

27 Years of Academic Excellence | State of Art Infrastructure

$\begin{matrix} lim\\x \to 0\end{matrix}\frac{sin 3x+sin x}{x}=$

$\lim_{\theta \to \frac{\pi }{2}}\left ( \sec \theta - \tan \theta \right )$

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

$\lim_{x\to1 } \left ( 1+ \cos\pi x \right )\cot ^{2}\pi x$

Concepts Covered - 1

Trigonometric Limits

Trigonometric Limits

In the trigonometric limit, apart from using the method of direct substitution, factorization and rationalization (same as given in algebraic limits), we can use the following formulae.

(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\sin \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
(ii) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\tan \mathrm{x}}{\mathbf{x}}=\mathbf{1}$

As $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x}$

$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \times 1
$

(iii) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\sin (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$

As $\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=\lim _{h \rightarrow 0} \frac{\sin ((a+h)-a)}{(a+h)-a}$

$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1
\end{aligned}
$

(iv) $\lim _{\mathbf{x} \rightarrow \mathrm{a}} \frac{\tan (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
(v) $\lim _{x \rightarrow a} \frac{\sin (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$

Similarly, $\quad \lim _{x \rightarrow a} \frac{\tan (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
(vi) $\lim _{x \rightarrow 0} \cos x=1$

(vii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}=1$

As $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{y \rightarrow 0} \frac{y}{\sin y} \quad\left[\because \sin ^{-1} x=y\right]$
$=1$
(viii) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$

Study it with Videos

Trigonometric Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions