Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Trigonometric Limits is considered one the most difficult concept.
642 Questions around this concept.
equals:
is equal to :
if is continuous and
, then
is equal to :
New: JEE Main 2026 Session 2 Registration Starts; Apply Now
JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)
JEE Main 2026 Tools: Rank Predictor | College Predictor
If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
$\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{x^2}$ equals
$\lim _{x \rightarrow 0} \frac{\sin 8 x}{\tan 3 x}$ equals
$\begin{matrix} lim\\x \to 0\end{matrix}\frac{sin 3x+sin x}{x}=$
$\lim_{\theta \to \frac{\pi }{2}}\left ( \sec \theta - \tan \theta \right )$
$\lim_{x\to1 } \left ( 1+ \cos\pi x \right )\cot ^{2}\pi x$
Trigonometric Limits
In the trigonometric limit, apart from using the method of direct substitution, factorization and rationalization (same as given in algebraic limits), we can use the following formulae.
(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\sin \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
(ii) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\tan \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
As $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x}$
$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \times 1
$
(iii) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\sin (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
As $\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=\lim _{h \rightarrow 0} \frac{\sin ((a+h)-a)}{(a+h)-a}$
$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1
\end{aligned}
$
(iv) $\lim _{\mathbf{x} \rightarrow \mathrm{a}} \frac{\tan (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
(v) $\lim _{x \rightarrow a} \frac{\sin (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
Similarly, $\quad \lim _{x \rightarrow a} \frac{\tan (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
(vi) $\lim _{x \rightarrow 0} \cos x=1$
(vii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}=1$
As $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{y \rightarrow 0} \frac{y}{\sin y} \quad\left[\because \sin ^{-1} x=y\right]$
$=1$
(viii) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
