Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Trigonometric Limits is considered one the most difficult concept.
642 Questions around this concept.
equals:
is equal to :
if is continuous and
, then
is equal to :
JEE Main 2026: Result OUT; Check Now | Final Answer Key Link
JEE Main 2026 Tools: College Predictor
JEE Main 2026: Session 2 Registration Link | Foreign Universities in India
If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
$\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{x^2}$ equals
$\lim _{x \rightarrow 0} \frac{\sin 8 x}{\tan 3 x}$ equals
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Last Date to Apply: 28th Feb | Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
$\begin{matrix} lim\\x \to 0\end{matrix}\frac{sin 3x+sin x}{x}=$
$\lim_{\theta \to \frac{\pi }{2}}\left ( \sec \theta - \tan \theta \right )$
$\lim_{x\to1 } \left ( 1+ \cos\pi x \right )\cot ^{2}\pi x$
Trigonometric Limits
In the trigonometric limit, apart from using the method of direct substitution, factorization and rationalization (same as given in algebraic limits), we can use the following formulae.
(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\sin \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
(ii) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\tan \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
As $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x}$
$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \times 1
$
(iii) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\sin (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
As $\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=\lim _{h \rightarrow 0} \frac{\sin ((a+h)-a)}{(a+h)-a}$
$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1
\end{aligned}
$
(iv) $\lim _{\mathbf{x} \rightarrow \mathrm{a}} \frac{\tan (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
(v) $\lim _{x \rightarrow a} \frac{\sin (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
Similarly, $\quad \lim _{x \rightarrow a} \frac{\tan (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
(vi) $\lim _{x \rightarrow 0} \cos x=1$
(vii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}=1$
As $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{y \rightarrow 0} \frac{y}{\sin y} \quad\left[\because \sin ^{-1} x=y\right]$
$=1$
(viii) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
