JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Limits of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Trigonometric Limits is considered one the most difficult concept.

  • 608 Questions around this concept.

Solve by difficulty

\lim_{x\rightarrow \frac{\pi }{2}}\: \: \frac{\cot x-\cos x}{\left ( \pi -2x \right )^{3}}equals:

\lim_{x\rightarrow 0}\frac{\sin \left ( \pi \cos ^{2}x \right )}{x^{2}}   is equal to :

if f(x) is continuous and f(\frac{9}{2})=\frac{2}{9}, then \lim_{x\rightarrow 0}f\left ( \frac{1-\cos 3x}{x^{2}} \right )  is equal to :

\lim_{x\rightarrow 2}\left ( \frac{\sqrt{1-\cos \left \{ 2(x-2) \right \}}}{x-2} \right )

If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :

Concepts Covered - 1

Trigonometric Limits

Trigonometric Limits

In the trigonometric limit, apart from using the method of direct substitution, factorization and rationalization (same as given in algebraic limits), we can use the following formulae.

(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\sin \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
(ii) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\tan \mathrm{x}}{\mathbf{x}}=\mathbf{1}$

As $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x}$

$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \times 1
$

(iii) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\sin (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$

As $\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=\lim _{h \rightarrow 0} \frac{\sin ((a+h)-a)}{(a+h)-a}$

$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1
\end{aligned}
$

(iv) $\lim _{\mathbf{x} \rightarrow \mathrm{a}} \frac{\tan (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
(v) $\lim _{x \rightarrow a} \frac{\sin (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$

Similarly, $\quad \lim _{x \rightarrow a} \frac{\tan (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
(vi) $\lim _{x \rightarrow 0} \cos x=1$

(vii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}=1$

As $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{y \rightarrow 0} \frac{y}{\sin y} \quad\left[\because \sin ^{-1} x=y\right]$
$=1$
(viii) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$

Study it with Videos

Trigonometric Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Limits

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 2.17

Line : 13

E-books & Sample Papers

Get Answer to all your questions

Back to top