JEE Main Cutoff for IIIT Una 2026 - Check Opening and Closing Ranks

Limits of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Trigonometric Limits is considered one the most difficult concept.

  • 642 Questions around this concept.

Solve by difficulty

\lim_{x\rightarrow \frac{\pi }{2}}\: \: \frac{\cot x-\cos x}{\left ( \pi -2x \right )^{3}}equals:

\lim_{x\rightarrow 0}\frac{\sin \left ( \pi \cos ^{2}x \right )}{x^{2}}   is equal to :

if f(x) is continuous and f(\frac{9}{2})=\frac{2}{9}, then \lim_{x\rightarrow 0}f\left ( \frac{1-\cos 3x}{x^{2}} \right )  is equal to :

\lim_{x\rightarrow 2}\left ( \frac{\sqrt{1-\cos \left \{ 2(x-2) \right \}}}{x-2} \right )

If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :

$\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{x^2}$ equals

$\lim _{x \rightarrow 0} \frac{\sin 8 x}{\tan 3 x}$ equals

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Last Date to Apply: 28th Feb | Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

$\begin{matrix} lim\\x \to 0\end{matrix}\frac{sin 3x+sin x}{x}=$

$\lim_{\theta \to \frac{\pi }{2}}\left ( \sec \theta - \tan \theta \right )$

JEE Main 2026 College Predictor
Discover your college admission chances with the JEE Main 2026 College Predictor. Explore NITs, IIITs, CFTIs and other institutes based on your percentile, rank, and details.
Try Now

$\lim_{x\to1 } \left ( 1+ \cos\pi x \right )\cot ^{2}\pi x$

Concepts Covered - 1

Trigonometric Limits

Trigonometric Limits

In the trigonometric limit, apart from using the method of direct substitution, factorization and rationalization (same as given in algebraic limits), we can use the following formulae.

(i) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\sin \mathrm{x}}{\mathbf{x}}=\mathbf{1}$
(ii) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\tan \mathrm{x}}{\mathbf{x}}=\mathbf{1}$

As $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x}$

$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \times 1
$

(iii) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\sin (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$

As $\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=\lim _{h \rightarrow 0} \frac{\sin ((a+h)-a)}{(a+h)-a}$

$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1
\end{aligned}
$

(iv) $\lim _{\mathbf{x} \rightarrow \mathrm{a}} \frac{\tan (\mathbf{x}-\mathbf{a})}{\mathbf{x}-\mathbf{a}}=\mathbf{1}$
(v) $\lim _{x \rightarrow a} \frac{\sin (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$

Similarly, $\quad \lim _{x \rightarrow a} \frac{\tan (f(x))}{f(x)}=1$, if $\lim _{x \rightarrow a} f(x)=0$
(vi) $\lim _{x \rightarrow 0} \cos x=1$

(vii) $\lim _{\mathrm{x} \rightarrow 0} \frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}=1$

As $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{y \rightarrow 0} \frac{y}{\sin y} \quad\left[\because \sin ^{-1} x=y\right]$
$=1$
(viii) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$

Study it with Videos

Trigonometric Limits

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions