What JEE Rank Is Required To Get Into IISc

Piecewise Definite integration - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Piecewise Definite integration is considered one the most difficult concept.

  • 30 Questions around this concept.

Solve by difficulty

The integral

\int_{0 }^{\pi }\sqrt{1+4\sin ^{2}\frac{x}{2}-4\sin \frac{x}{2}}dx

equals:

Concepts Covered - 1

Piecewise Definite integration

Property 5

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathbf{f}(\mathrm{x}) \mathrm{d} \mathbf{x}=\int_{\mathrm{a}}^{\mathrm{c}} \mathbf{f}(\mathrm{x}) \mathrm{d} \mathbf{x}+\int_{\mathbf{c}}^{\mathrm{b}} \mathbf{f}(\mathbf{x}) \mathrm{dx} \text { where } c \in \mathbb{R}
$$

This property is useful when the function is in the form of piecewise or discontinuous or non-differentiable at $x=c$ in $(a, b)$.
Let
$$
\begin{aligned}
& \frac{d}{d x}(F(x))=f(x) \\
& \begin{aligned}
& \int_a^c f(x) d x+\int_c^b f(x) d x \\
& \quad=\left.F(x)\right|_a ^c+\left.F(x)\right|_c ^b \\
&=F(c)-F(a)+F(b)-F(c) \\
& \quad=F(b)-F(a) \\
& \quad=\int_a^b f(x) d x
\end{aligned}
\end{aligned}
$$
$$
\therefore \quad \int_a^c f(x) d x+\int_c^b f(x) d x
$$

 

The above property can also be generalized into the following form

$$
\int_a^b f(x) d x=\int_a^{c_1} f(x) d x+\int_{c_1}^{c_2} f(x) d x+\ldots+\int_{c_n}^b f(x) d x
$$
where, $\quad a<c_1<c_2<\ldots<c_{n-1}<c_n<b$.

 

Property 6

$$
\int_0^a f(x) d x=\int_0^{a / 2} f(x) d x+\int_0^{a / 2} f(a-x) d x
$$

Proof:
From the previous property,
$$
\int_0^a f(x) d x=\int_0^{a / 2} f(x) d x+\int_{a / 2}^a f(x) d x
$$

Put $x=a-t \Rightarrow d x=-d t$ in the second integral, when $x=a / 2$, then $t=a / 2$ and when $x=a$, then $t=0$
$$
\therefore \quad \begin{aligned}
\int_0^a f(x) d x & =\int_0^{a / 2} f(x) d x+\int_{a / 2}^0 f(a-t)(-d t) \\
& =\int_0^{\mathrm{a} / 2} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{a} / 2} \mathrm{f}(\mathrm{a}-\mathrm{t}) \mathrm{dt} \\
\int_0^a f(x) d x & =\int_0^{a / 2} f(x) d x+\int_0^{a / 2} f(a-x) d x
\end{aligned}
$$

 

Study it with Videos

Piecewise Definite integration

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Piecewise Definite integration

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 8.11

Line : 49

E-books & Sample Papers

Get Answer to all your questions

Back to top