Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Fundamental Formulae of Indefinite Integration (Trigonometric Functions) is considered one of the most asked concept.
28 Questions around this concept.
$\int \frac{\cos 2 x}{\cos x} d x$ equals
$\int 3\sqrt{\frac{\sin^{n}x}{\cos ^{n+6}x}}.dx \,\, n\epsilon N=$
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^2 x d x$ is equal to
JEE Main 2025: Rank Predictor | Admit Card Link | January Session Exam Analysis
JEE Main 2025: Memory Based Question: Jan 24- Shift 1 | Jan 23- Shift 1 | Shift 2 | Jan 22- Shift 1 | Shift 2
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
Trigonometric Functions
1. $\frac{d}{d x}(-\cos x)=\sin x \Rightarrow \int \sin x d x=-\cos x+C$
2. $\frac{d}{d x}(\sin \mathrm{x})=\cos \mathrm{x} \Rightarrow \int \cos \mathrm{xdx}=\sin \mathrm{x}+\mathrm{C}$
3. $\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})=\sec ^2 \mathrm{x} \Rightarrow \int \sec ^2 \mathrm{xdx}=\tan \mathrm{x}+\mathrm{C}$
4. $\frac{\mathrm{d}}{\mathrm{dx}}(-\cot \mathrm{x})=\csc ^2 \mathrm{x} \Rightarrow \int \csc ^2 \mathrm{xdx}=-\cot \mathrm{x}+\mathrm{C}$
5. $\frac{d}{d x}(\sec x)=\sec x \tan x \Rightarrow \int \sec x \tan x d x=\sec x+C$
6. $\frac{d}{d x}(-\csc x)=\csc x \cot x \Rightarrow \int \csc x \cot x d x=-\csc x+C$
Integrals of tan x, cot x, sec x, cosec x
7. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\sin \mathrm{x}|)=\cot \mathrm{x} \Rightarrow \int \cot \mathrm{xdx}=\log |\sin \mathrm{x}|+C$
8. $\frac{d}{d x}(-\log |\cos \mathrm{x}|)=\tan \mathrm{x} \Rightarrow \int \tan \mathrm{xdx}=-\log |\cos \mathrm{x}|+\mathrm{C}$
9. $\frac{d}{d x}(\log |\sec \mathrm{x}+\tan \mathrm{x}|)=\sec \mathrm{x} \Rightarrow \int \sec \mathrm{xdx}=\log |\sec \mathrm{x}+\tan \mathrm{x}|+C$
10. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\csc \mathrm{x}-\cot \mathrm{x}|)=\csc \mathrm{x} \Rightarrow \int \csc \mathrm{xdx}=\log |\csc \mathrm{x}-\cot \mathrm{x}|+\mathrm{C}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"