NITs Cutoff for B.Tech Biotechnology 2026 - Check Previous Year cutoff here

Integration of Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Fundamental Formulae of Indefinite Integration (Trigonometric Functions) is considered one of the most asked concept.

  • 34 Questions around this concept.

Solve by difficulty

$\int \frac{\cos 2 x}{\cos x} d x$ equals

$\int 3\sqrt{\frac{\sin^{n}x}{\cos ^{n+6}x}}.dx \,\, n\epsilon N=$

$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^2 x d x$ is equal to

New: JEE Main 2026 Session 2 Registration Starts; Apply Now

JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)

JEE Main 2026 Tools: Rank Predictor | College Predictor

Comprehensive Guide: IIT'sNIT'sIIIT's

$\int \frac{x^3}{x+1}$ is equal to

Concepts Covered - 1

Fundamental Formulae of Indefinite Integration (Trigonometric Functions)

Trigonometric Functions

1. $\frac{d}{d x}(-\cos x)=\sin x \Rightarrow \int \sin x d x=-\cos x+C$
2. $\frac{d}{d x}(\sin \mathrm{x})=\cos \mathrm{x} \Rightarrow \int \cos \mathrm{xdx}=\sin \mathrm{x}+\mathrm{C}$
3. $\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})=\sec ^2 \mathrm{x} \Rightarrow \int \sec ^2 \mathrm{xdx}=\tan \mathrm{x}+\mathrm{C}$
4. $\frac{\mathrm{d}}{\mathrm{dx}}(-\cot \mathrm{x})=\csc ^2 \mathrm{x} \Rightarrow \int \csc ^2 \mathrm{xdx}=-\cot \mathrm{x}+\mathrm{C}$
5. $\frac{d}{d x}(\sec x)=\sec x \tan x \Rightarrow \int \sec x \tan x d x=\sec x+C$
6. $\frac{d}{d x}(-\csc x)=\csc x \cot x \Rightarrow \int \csc x \cot x d x=-\csc x+C$

Integrals of tan x, cot x, sec x, cosec x

7. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\sin \mathrm{x}|)=\cot \mathrm{x} \Rightarrow \int \cot \mathrm{xdx}=\log |\sin \mathrm{x}|+C$
8. $\frac{d}{d x}(-\log |\cos \mathrm{x}|)=\tan \mathrm{x} \Rightarrow \int \tan \mathrm{xdx}=-\log |\cos \mathrm{x}|+\mathrm{C}$
9. $\frac{d}{d x}(\log |\sec \mathrm{x}+\tan \mathrm{x}|)=\sec \mathrm{x} \Rightarrow \int \sec \mathrm{xdx}=\log |\sec \mathrm{x}+\tan \mathrm{x}|+C$
10. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\csc \mathrm{x}-\cot \mathrm{x}|)=\csc \mathrm{x} \Rightarrow \int \csc \mathrm{xdx}=\log |\csc \mathrm{x}-\cot \mathrm{x}|+\mathrm{C}$

Study it with Videos

Fundamental Formulae of Indefinite Integration (Trigonometric Functions)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Fundamental Formulae of Indefinite Integration (Trigonometric Functions)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.1

Line : 40

E-books & Sample Papers

Get Answer to all your questions