JEE Main Official Answer Key 2025 Release Date Soon - How to Download PDF

Integration of Irrational Algebraic Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 14 Questions around this concept.

Solve by difficulty

Evaluate $\int \frac{d x}{(x-1) \sqrt{x^2+x+1}}, \mathrm{x}>1$

$\int \frac{4}{\sqrt {1- e ^{ 4x}}} dx$

The value of the integral \int \frac{d x}{(x-2)^{7 / 8}(x+3)^{9 / 8}} is equal to.

JEE Main 2025: Rank Predictor |  College Predictor

JEE Main 2025 Memory Based Question: Jan 29- Shift 1 | shift-2 | Jan 28- Shift 1 Shift-2 | Jan 22, 23 & 24 (Shift 1 & 2)

JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs

\int\left(\frac{\ln x-1}{(\ln x)^2+1}\right)^2 d x is equal to 

Concepts Covered - 4

Integration of Irrational Algebraic Function (Part 1)

(a) Integrals of the Form
(i) $\int \frac{1}{(a x+b) \sqrt{p x+q}} d x$
(ii) $\int \frac{a x+b}{\sqrt{p x+q}} d x$
(iii) $\int \frac{\sqrt{p x+q}}{a x+b} d x$
(iv) $\int \frac{1}{\left(a x^2+b x+c\right) \sqrt{p x+q}} d x$

To evaluate this type of integrals, put px + q = t2  

Illustration 

Evaluate: $\int \frac{\mathrm{dx}}{(\mathrm{x}+1) \sqrt{\mathrm{x}+2}}$
Let $\mathrm{I}=\int \frac{d x}{(x+1) \sqrt{x+2}}$
Substitute: $x+2=t^2 \quad \Rightarrow \quad d x=2 t d t$
$
\begin{aligned}
& \Rightarrow \int \frac{d x}{x+1(\sqrt{x+2})}=\int \frac{2 t d t}{\left(t^2-1\right) \sqrt{t^2}}=2 \int \frac{d t}{t^2-1} \\
& =\frac{2}{2} \log \left|\frac{t-1}{t+1}\right|+C=\log \left|\frac{\sqrt{x+2}-1}{\sqrt{x+2+1}}\right|+C
\end{aligned}
$

Integration of Irrational Algebraic Function (Part 2)

(b) Integrals of the Form
(i) $\int \frac{1}{(p x+q) \sqrt{a x^2+b x+c}} d x$

To evaluate this type of integral, put $p x+q=1 / t$
(c) Integrals of the Form
(i) $\int \frac{1}{\left(\mathrm{ax}^2+\mathrm{b}\right) \sqrt{\mathrm{px}^2+\mathrm{q}}} d x$

To evaluate this type of integral, put $\mathrm{x}=\frac{1}{\mathrm{t}}$

Integration by Derived Substitution (Part 2)

Integrals of the Form $\int x^m\left(a+b x^n\right)^p d x$
Working Rule:
Case I : If $P \in N$, expand using binomial and integrate.
Case II : If $P \in I^{-}$(ie, negative integer), write $x=t^k$ where $k$ is the LCM of $m$ and $n$.

Case III : If $\frac{m+1}{n}$ is an integer and $P \leftrightarrow$ fraction, put $\left(a+b x^n\right)=t^k$ where $k$ is denominator of the fraction $P$.

Case IV: If $\left(\frac{m+1}{n}+P\right)$ is an integer and $P \in$ fraction, $\operatorname{put}\left(a+b x^n\right)=t^k x^n$, where $k$ is denominator of the fraction $P$.

Integration Using Euler's Substitution

Integration of the form $\int \mathbf{f}\left(\mathbf{x}, \sqrt{\mathbf{a x}^2+\mathbf{b x}+\mathbf{c}}\right) \mathrm{dx}$ can be solved using one of the Euler's substitutions.
(i) $\sqrt{a x^2+b x+c}=t \pm x \sqrt{a}$, if $a>0$
(ii) $\sqrt{a x^2+b x+c}=t x+\sqrt{c}$, if $c>0$
(iii) $\sqrt{a x^2+b x+c}=(x-\alpha) t$, If $\alpha$ is real root of $a x^2+b x+c$.

Illustration
The value of the integral, $I=\int \frac{d x}{1+\sqrt{\mathrm{x}^2+2 \mathrm{x}+2}}$ is
Here $\mathrm{a}=1>0$, therefore make the substitution $\sqrt{x^2+2 x+2}=t-x$

Squaring both sides of this equality and reducing the similar terms, we get

$
\begin{aligned}
& x^2+2 x+2=(t-x)^2 \\
& x^2+2 x+2=t^2-2 t x+x^2 \\
& 2 x+2 t x=t^2-2 \\
& \Rightarrow \quad x=\frac{t^2-2}{2(1+t)} \Rightarrow d x=\frac{t^2+2 t+2}{2(1+t)^2} d t \\
& \quad 1+\sqrt{\mathrm{x}^2+2 \mathrm{x}+2}=1+\mathrm{t}-\frac{\mathrm{t}^2-2}{2(1+\mathrm{t})}=\frac{\mathrm{t}^2+4 \mathrm{t}+4}{2(1+\mathrm{t})^2}
\end{aligned}
$

Substituting into the integral, we get
$
I=\int \frac{2(1+t)\left(t^2+2 t+2\right)}{\left(t^2+4 t+4\right) 2(1+t)^2} d t=\int \frac{\left(t^2+2 t+2\right) d t}{(1+t)(1+2)^2}
$

Using the partial fraction,

$
\frac{t^2+2 t+2}{(t+1)(t+2)^2}=\frac{A}{t+1}+\frac{B}{t+2}+\frac{C}{(t+2)^2}
$
we get $\mathrm{A}=1, \mathrm{~B}=0$ and $\mathrm{C}=-2$
$
\frac{t^2+2 t+2}{(t+1)(t+2)^2}=\frac{1}{t+1}-\frac{2}{(t+2)^2}
$

Hence,
$
\begin{aligned}
\int \frac{\mathrm{t}^2+2 \mathrm{t}+2}{(1+\mathrm{t})(1+2)^2} \mathrm{dt} & =\int \frac{\mathrm{dt}}{\mathrm{t}+1}-2 \int \frac{\mathrm{dt}}{(\mathrm{t}+2)^2} \\
& =\ln |\mathrm{t}+1|+\frac{2}{\mathrm{t}+2}+\mathrm{C}
\end{aligned}
$

Now, put the value of $t$ in terms of $x$
$
I=\ln \left(x+1+\sqrt{x^2+2 x+2}\right)+\frac{2}{x+2+\sqrt{x^2+2 x+2}}+C
$

 

Study it with Videos

Integration of Irrational Algebraic Function (Part 1)
Integration of Irrational Algebraic Function (Part 2)
Integration by Derived Substitution (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration of Irrational Algebraic Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.20

Line : 40

Integration of Irrational Algebraic Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.21

Line : 3

E-books & Sample Papers

Get Answer to all your questions

Back to top