Careers360 Logo
JEE Main April 7 Shift 1 Question Paper with Solutions 2025

Integration of Irrational Algebraic Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 16 Questions around this concept.

Solve by difficulty

āˆ«e5logeā”xāˆ’e4logeā”xe3logeā”xāˆ’e2logeā”x.dx 

is equal to ?

Concepts Covered - 4

Integration of Irrational Algebraic Function (Part 1)

(a) Integrals of the Form
(i) āˆ«1(ax+b)px+qdx
(ii) āˆ«ax+bpx+qdx
(iii) āˆ«px+qax+bdx
(iv) āˆ«1(ax2+bx+c)px+qdx

To evaluate this type of integrals, put px + q = t2  

Illustration 

Evaluate: āˆ«dx(x+1)x+2
Let I=āˆ«dx(x+1)x+2
Substitute: x+2=t2ā‡’dx=2tdt
ā‡’āˆ«dxx+1(x+2)=āˆ«2tdt(t2āˆ’1)t2=2āˆ«dtt2āˆ’1=22logā”|tāˆ’1t+1|+C=logā”|x+2āˆ’1x+2+1|+C

Integration of Irrational Algebraic Function (Part 2)

(b) Integrals of the Form
(i) āˆ«1(px+q)ax2+bx+cdx

To evaluate this type of integral, put px+q=1/t
(c) Integrals of the Form
(i) āˆ«1(ax2+b)px2+qdx

To evaluate this type of integral, put x=1t

Integration by Derived Substitution (Part 2)

Integrals of the Form āˆ«xm(a+bxn)pdx
Working Rule:
Case I : If PāˆˆN, expand using binomial and integrate.
Case II : If PāˆˆIāˆ’(ie, negative integer), write x=tk where k is the LCM of m and n.

Case III : If m+1n is an integer and Pā†” fraction, put (a+bxn)=tk where k is denominator of the fraction P.

Case IV: If (m+1n+P) is an integer and Pāˆˆ fraction, put(a+bxn)=tkxn, where k is denominator of the fraction P.

Integration Using Euler's Substitution

Integration of the form āˆ«f(x,ax2+bx+c)dx can be solved using one of the Euler's substitutions.
(i) ax2+bx+c=tĀ±xa, if a>0
(ii) ax2+bx+c=tx+c, if c>0
(iii) ax2+bx+c=(xāˆ’Ī±)t, If Ī± is real root of ax2+bx+c.

Illustration
The value of the integral, I=āˆ«dx1+x2+2x+2 is
Here a=1>0, therefore make the substitution x2+2x+2=tāˆ’x

Squaring both sides of this equality and reducing the similar terms, we get

x2+2x+2=(tāˆ’x)2x2+2x+2=t2āˆ’2tx+x22x+2tx=t2āˆ’2ā‡’x=t2āˆ’22(1+t)ā‡’dx=t2+2t+22(1+t)2dt1+x2+2x+2=1+tāˆ’t2āˆ’22(1+t)=t2+4t+42(1+t)2

Substituting into the integral, we get
I=āˆ«2(1+t)(t2+2t+2)(t2+4t+4)2(1+t)2dt=āˆ«(t2+2t+2)dt(1+t)(1+2)2

Using the partial fraction,

t2+2t+2(t+1)(t+2)2=At+1+Bt+2+C(t+2)2
we get A=1, B=0 and C=āˆ’2
t2+2t+2(t+1)(t+2)2=1t+1āˆ’2(t+2)2

Hence,
āˆ«t2+2t+2(1+t)(1+2)2dt=āˆ«dtt+1āˆ’2āˆ«dt(t+2)2=lnā”|t+1|+2t+2+C

Now, put the value of t in terms of x
I=lnā”(x+1+x2+2x+2)+2x+2+x2+2x+2+C

 

Study it with Videos

Integration of Irrational Algebraic Function (Part 1)
Integration of Irrational Algebraic Function (Part 2)
Integration by Derived Substitution (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration of Irrational Algebraic Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.20

Line : 40

Integration of Irrational Algebraic Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.21

Line : 3

E-books & Sample Papers

Get Answer to all your questions

Back to top