JEE Main Class 11 Syllabus 2025 PDF for Paper 1 and 2

Integration of Irrational Algebraic Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 12 Questions around this concept.

Solve by difficulty

The value of the integral \int \frac{d x}{(x-2)^{7 / 8}(x+3)^{9 / 8}} is equal to.

\int\left(\frac{\ln x-1}{(\ln x)^2+1}\right)^2 d x is equal to 

Concepts Covered - 4

Integration of Irrational Algebraic Function (Part 1)

\\\mathrm{\mathbf{(a)}\;\;{\mathbf {Integrals \;of \;the \;Form } }}\\\\\mathrm{\;\;\;\;\;\;\;(i)\;\int\frac{1}{(ax+b)\sqrt{px+q}}\;dx}\\\\\mathrm{\;\;\;\;\;\;\;(ii)\;\int\frac{ax+b}{\sqrt{px+q}}\;dx}\\\\\mathrm{\;\;\;\;\;\;(iii)\;\int\frac{\sqrt{px+q}}{{ax+b}}\;dx}\\\\\mathrm{\;\;\;\;\;\;\;(iv)\;\int\frac{1}{(ax^2+bx+c)\sqrt{px+q}}\;dx}

To evaluate this type of integrals, put px + q = t2  

Illustration 

\\\mathrm{Evaluate:\;\;\int \frac{d x}{(x+1) \sqrt{x+2}}}\\\\\text{Let I}=\int \frac{d x}{(x+1) \sqrt{x+2}}\\\\\text { Substitute: } x+2=t^{2} \quad \Rightarrow \quad d x=2 t d t\\\\\Rightarrow \int \frac{d x}{x+1(\sqrt{x+2})}=\int \frac{2 t d t}{\left(t^{2}-1\right) \sqrt{t^{2}}}=2 \int \frac{d t}{t^{2}-1}\\\\=\frac{2}{2} \log \left|\frac{t-1}{t+1}\right|+C=\log \left|\frac{\sqrt{x+2}-1}{\sqrt{x+2+1}}\right|+C

Integration of Irrational Algebraic Function (Part 2)

\\\mathrm{\mathbf{(b)}\;\;{\mathbf {Integrals \;of \;the \;Form } }}\\\\\mathrm{\;\;\;\;\;\;\;(i)\;\int\frac{1}{(px+q)\sqrt{ax^2+bx+c}}\;dx}

To evaluate this type of integral, put px + q = 1/t

 

\\\mathrm{\mathbf{(c)}\;\;{\mathbf {Integrals \;of \;the \;Form } }}\\\\\mathrm{\;\;\;\;\;\;\;(i)\;\int\frac{1}{(ax^2+b)\sqrt{px^2+q}}\;dx}

To evaluate this type of integral, 

\\\mathrm{put\;\;x=\frac{1}{t}}

Integration by Derived Substitution (Part 2)

\mathbf { Integrals \;of \;the \;Form } \int x^{m}\left(a+b x^{n}\right)^{p} d x

Working Rule:

\\\mathbf { Case \;I: } \text{ If } P \in N, \text { expand using binomial and integrate. }\\\\\mathbf{Case\;II: }\text { If } P \in I^{-} \text {(ie, negative integer), write } x=t^{k}\;\text { where }\\ \mathrm{\;\;\;\;\;\;\;}\;\;\;\;\;\;\;\;\; k \text { is the LCM of } m \text { and } n.\\\\\mathbf{Case\;III: }\text { If } \frac{m+1}{n} \text { is an integer and } P \leftrightarrow \text { fraction, put }\left(a+b x^{n}\right)=t^{k}\\ \mathrm{\;\;\;\;\;\;\;}\;\;\;\;\;\;\;\;\; \text { where } k \text { is denominator of the fraction } P.\\\\\mathbf{Case\;IV: }\text { If }\left(\frac{m+1}{n}+P\right) \text { is an integer and } P \in \text { fraction, }\\ \mathrm{\;\;\;\;\;\;\;}\;\;\;\;\;\;\;\;\; \operatorname{put}\left(a+b x^{n}\right)=t^{k} x^{n}, \text { where } k \text { is denominator of the fraction }P.

Integration Using Euler's Substitution

\\\mathrm{Integration\;of\;the\;form\;\;\mathbf{\int f(x, \sqrt{a x^{2}+b x+c} )\;d x}\;can\;be\;solved}\\\text{using\ one\;of\;the\;Euler's\;substitutions.}\\\\\text{(i)}\;\;\;\;\sqrt{a x^{2}+b x+c}=t \pm x \sqrt{a}, \text { if } a>0\\\\\text{(ii)}\;\;\;\sqrt{a x^{2}+b x+c}=t x+\sqrt{c}, \text { if } c>0\\\\\text{(iii)}\;\;\;\sqrt{a x^{2}+b x+c}=(x-\alpha) t, \text { If } \alpha \text { is real root of }ax^2+bx+c.

Illustration

\\\mathrm{The\;value\;of\;the\;integral,\;\;I=\int \frac{d x}{1+\sqrt{x^{2}+2 x+2}}\;\;is }

Here a = 1 > 0, therefore make the substitution \sqrt{x^{2}+2 x+2}=t-x

Squaring both sides of this equality and reducing the similar terms, we get

\\{x^{2}+2 x+2}=(t-x)^2\\ x^2+2x+2=t^2-2tx+x^2 \\ 2x+2tx=t^2-2

\\\Rightarrow \;\quad x=\frac{t^{2}-2}{2(1+t)} \Rightarrow d x=\frac{t^{2}+2 t+2}{2(1+t)^{2}} d t\\\\\mathrm{\;\;\;\;\;\;\;\;\;1+\sqrt{x^{2}+2 x+2}=1+t-\frac{t^{2}-2}{2(1+t)}=\frac{t^{2}+4 t+4}{2(1+t)^{2}}}\\\text{Substituting into the integral, we get}\\\\\mathrm{I}=\int \frac{2(1+\mathrm{t})\left(\mathrm{t}^{2}+2 \mathrm{t}+2\right)}{\left(\mathrm{t}^{2}+4 \mathrm{t}+4\right) 2(1+\mathrm{t})^{2}} \mathrm{dt}=\int \frac{\left(\mathrm{t}^{2}+2 \mathrm{t}+2\right) \mathrm{dt}}{(1+\mathrm{t})(1+2)^{2}}

Using the partial fraction,

\\\frac{t^{2}+2 t+2}{(t+1)(t+2)^{2}}=\frac{A}{t+1}+\frac{B}{t+2}+\frac{C}{(t+2)^{2}}\\\text{we get A = 1, B = 0 and C = -2}\\\\\frac{t^{2}+2 t+2}{(t+1)(t+2)^{2}}= \frac{1}{t+1}-\frac{2}{(t+2)^{2}}\\\text{Hence,}\\ {\int \frac{\mathrm{t}^{2}+2 \mathrm{t}+2}{(1+\mathrm{t})(1+2)^{2}} \mathrm{dt}=\int \frac{\mathrm{dt}}{\mathrm{t}+1}-2 \int \frac{\mathrm{dt}}{(\mathrm{t}+2)^{2}}} \\ { \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\ln |\mathrm{t}+1|+\frac{2}{\mathrm{t}+2}+\mathrm{C}}

Now, put the value of t in terms of x

\mathrm{I=\ln (\mathrm{x}+1+\sqrt{\mathrm{x}^{2}+2 \mathrm{x}+2})+\frac{2}{x+2+\sqrt{x^{2}+2 x+2}}+C}

Study it with Videos

Integration of Irrational Algebraic Function (Part 1)
Integration of Irrational Algebraic Function (Part 2)
Integration by Derived Substitution (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration of Irrational Algebraic Function (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.20

Line : 40

Integration of Irrational Algebraic Function (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.21

Line : 3

E-books & Sample Papers

Get Answer to all your questions

Back to top