Careers360 Logo
Top Engineering Colleges in India with High RPC Scores

Reduction Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Reduction Formula (Part 1) is considered one of the most asked concept.

  • 20 Questions around this concept.

Solve by difficulty

Evaluate the integral of x^{5}log^{2}x

Concepts Covered - 2

Reduction Formula (Part 1)

\mathbf{(a)\;\;\;{\int\;\sin^n x\;dx}}

\\\text {Let } \;\;\;\;\;\;\;I_{n}=\int \sin ^{n} x d x=\int \sin ^{n-1} x \sin x d x\\\mathrm{take\;\sin^{n-1}x\;as\;first\;function\;and\;\sin x\;as\;second\;function}\\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}{=-\sin ^{n-1} x \cos x+\int(n-1) \sin ^{n-2} x \cos ^{2} x d x} \\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=-\sin ^{n-1} x \cos x+(n-1) \int \sin ^{n-2} x\left(1-\sin ^{2} x\right) d x} \\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {=-\sin ^{n-1} x \cos x+(n-1) \int\left(\sin ^{n-2} x-\sin ^{n} x\right) d x}\\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=-\sin ^{n-1} x \cos x+(n-1) I_{n-2}-(n-1) I_{n}\\\\ {\therefore \;\;\;\;\;\;\;n I_{n}=-\sin ^{n-1} x \cos x+(n-1) I_{n-2}} \\ {\Rightarrow\;\;\;\;\;\;\;\; I_{n}=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} I_{n-2}}\\\\ \text { Thus, } \int \sin ^{n} x d x=\frac{-\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x

 

\mathbf{(b)\;\;\;{\int\;\tan^n x\;dx}}

\\\text { Let }\;\;\;\;\;\; I_{n}=\int \tan ^{n} x d x\\ \Rightarrow \;\;\;\;\;\;\;\;I_{n} =\int \tan ^{n-2} x \tan ^{2} x d x=\int \tan ^{n-2} x\left(\sec ^{2} x-1\right) d x \\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\int \tan ^{n-2} x \sec ^{2} x-I_{n-2}=\int t^{n-2} d t-I_{n-2} \\\text { where, } \tan x=t\;\; \Rightarrow \;\;\sec ^{2} x \;d x=d t

\\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;}I_{n}=\frac{t^{n-1}}{n-1}-I_{n-2}\\ \mathrm{\therefore \;\;\;\;\;\;\;\;\;\;}I_{n}=\frac{\tan ^{n-1} x}{n-1}-I_{n-2}\\\\\Rightarrow \int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x

 

\mathbf{(c)\;\;\;{\int\;\cos^n x\;dx}}

\\\text {Let } I_{n}=\int \cos ^{n} x d x=\int \cos ^{n-1} x \cos x d x\\\text{Take\;}\cos^{n-1}x \text{ as first function and }\cos x\text{ as second function.}\\\\ \mathrm{\;\;\;\;\;}\;\;\;\; \begin{array}{l}{=\cos ^{n-1} x \sin x+\int(n-1) \cos ^{n-2} x \sin ^{2} x d x} \\ {=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x\left(1-\cos ^{2} x\right) d x} \\ {=\cos ^{n-1} x \sin x+(n-1) I_{n-2}-(n-1) I_{n}}\end{array}\\\\\therefore n I_{n}=\cos ^{n-1} x \sin x+(n-1) I_{n-2}\\\\\text { or } \int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x

 

 

\mathbf{(d)\;\;\;{\int\;\cot^n x\;dx}}

\\\text { Let } I_{n}=\int \cot ^{n} x d x=\int \cot ^{n-2} x \cot ^{2} x d x\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\int \cot ^{n-2} x\left(\csc ^{2} x-1\right) d x\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\int \cot ^{n-2} x \csc ^2xd x-I_{n-2} \\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\int t^{n-2} d t-I_{n-2}\\\text { where, } \cot x=t \Rightarrow \csc ^{2} x d x=-d t\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}I_{n}=-\frac{\cot ^{n-1} x}{n-1}-I_{n-2}\\\\\therefore \quad \int \cot ^{n} x d x=-\frac{\cot ^{n-1} x}{n-1}-\int \cot ^{n-2} x d x

 

\mathbf{(e)\;\;\;{\int\;\sec^n x\;dx}}

\\\text {Let } I_{n}=\int \sec ^{n} x d x=\int \sec ^{n-2} x \sec ^{2} x d x\\\\\mathrm{Take\;\sec^{n-2}x\;as\;first\;function\;and\;\sec^2x\;as\;a\;second\;function}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\sec ^{n-2} x \tan x-\int(n-2) \sec ^{n-3}x\sec x\tan x\cdot\tan xdx\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n-2} x\left(\sec ^{2} x-1\right) d x\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;}=\sec ^{n-2} x \tan x-(n-2) I_{n}+(n-2) I_{n-2}\\\\\Rightarrow (n-1) I_{n}=\sec ^{n-2} x \tan x+(n-2) I_{n-2}\\\\\mathrm{or\;\;\;\;\;\;\;\;\;}I_{n}=\frac{\sec ^{n-2} x \tan x}{(n-1)}+\frac{(n-2)}{(n-1)} I_{n-2}\\\\\therefore \int \sec ^{n} x d x=\frac{\sec ^{n-2} x \tan x}{(n-1)}+\frac{(n-2)}{(n-1)} \int \sec ^{n-2} x d x

 

\mathbf{(f)\;\;\;{\int\;\csc^n x\;dx}}

\begin{array}{l}{\text { Let } I_{n}=\int \csc ^{n} x d x=\int \csc ^{n-2} x \csc ^{2} x d x} \\ {\quad\quad\quad\quad=\csc ^{n-2} x(-\cot x)-\int(n-2) \csc ^{n-2} x\left(\csc ^{2} x-1\right) d x} \\ {\quad\quad\quad\quad=-\csc ^{n-2} x\left(-\cot x)-(n-2) \int\left(\csc ^{n} x-\csc ^{n-2} x\right) d x\right.} \\ {\quad\quad\quad\quad=-\csc ^{n-2} x \cot x-(n-2) I_{n}+(n-2) I_{n-2}} \\\\ {\therefore \quad(n-1) I_{n}=-\csc ^{n-2} x \cot x+(n-2) I_{n-2}} \\\\ {\text { or } \quad I_{n}=-\frac{\csc ^{n-2} x \cot x}{n-1}+\frac{n-2}{n-1} I_{n-2}} \\\\ {\therefore \int \csc ^{n} x d x=-\frac{\csc ^{n-2} x \cot x}{n-1}+\frac{n-2}{n-1} \int \csc ^{n-2} x d x}\end{array}

Reduction Formula (Part 2)

\mathbf{Integration\;of\;the\;type\;\;\;\int \cos^m x\; \sin nx\;dx}

\\\mathrm{Let\;I_{m,n}=\int\cos^m x\sin nx\;dx}\\\\\text{To\;evaluate\;this\;integral, we will use integration by parts method}\\\mathrm{Here,\;take\;\cos^m x\;as\;first\;function\;and \;\sin nx\;as\;second\;function.}\\\\\mathrm{\;\;\;\;\;\;\;\;\;}=-\frac{\cos ^{m} x \cos n x}{n}-\frac{m}{n} \int \cos ^{m-1} x \sin x \cos n x d x\\\mathrm{\;\;\;\;\;\;\;\;\;}=-\frac{\cos ^{m} x \cos n x}{n}-\frac{m}{n} \int \cos ^{m-1} x\{\sin n x \cos x-\sin (n-1) x\} d x\\ \text { [using } \sin (n-1) x=\sin n x \cos x-\cos n x \sin x\\\mathrm{\;\;\;\;\;\;}\Rightarrow \sin x \cos n x=\sin n x \cos x-\sin (n-1) x]\\\\\mathrm{\;\;\;\;\;\;\;\;\;}=-\frac{\cos ^{m} x \cos n x}{n}-\frac{m}{n} \int \cos ^{m} x \sin n x d x+\frac{m}{n} \int \cos ^{m-1} x \sin (n-1) x d x\\\mathrm{\;\;\;}I_{m, n}=-\frac{\cos ^{m} x \cos n x}{n}-\frac{m}{n} I_{m, n}+\frac{m}{n} I_{m-1, n-1}

\\ {\Rightarrow \frac{m+n}{n} I_{m, n}=-\frac{\cos ^{m} x \cos n x}{n}+\frac{m}{n} I_{m-1, n-1}} \\ {\text { or }\;\;\;\;\;\; \quad I_{m, n}=-\frac{\cos ^{m} x \cos n x}{m+n}+\frac{m}{m+n} I_{m-1, n-1}}

NOTE :

In the simmilar way we can also prove the following result

\\1.\;\;\;\int \cos ^{m} x \cos n x d x=\frac{\cos ^{m} x \sin n x}{m+n}+\frac{m}{m+n}\int \cos ^{m-1} x \cos (n-1) x d x\\\\2.\;\;\;\int \sin ^{m} x \sin n x d x=\frac{n \sin ^{m} x \cos n x}{m^{2}-n^{2}}-\frac{m \sin ^{m-1} x \cos x \cos n x}{m^{2}-n^{2}}+\frac{m(m-1)}{m^{2}-n^{2}} \int \sin ^{m-2} x \sin n x d x\\\\3.\;\;\;\int \sin ^{m} x \cos n x d x=\frac{n \sin ^{m} x \sin n x}{m^{2}-n^{2}}-\frac{m \sin ^{m-1} x \cos x \cos n x}{m^{2}-n^{2}}+\frac{m(m-1)}{m^{2}-n^{2}} \int \sin ^{m-2} x \cos n x d x

 

Study it with Videos

Reduction Formula (Part 1)
Reduction Formula (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Reduction Formula (Part 2)

Integral Calculus (Arihant)

Page No. : 475

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top