JEE Main Official Answer Key 2025 Release Date Soon - How to Download PDF

Reduction Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Reduction Formula (Part 1) is considered one of the most asked concept.

  • 22 Questions around this concept.

Solve by difficulty

If $\int \tan ^4 x d x=\lambda \tan ^3 x+\mu \tan x+x+c$, then

Concepts Covered - 2

Reduction Formula (Part 1)

(a) $\int \sin ^{\mathrm{n}} \mathrm{x} \mathrm{dx}$

Let $\quad I_n=\int \sin ^n x d x=\int \sin ^{n-1} x \sin x d x$ take $\sin ^{\mathrm{n}-1} \mathrm{x}$ as first function and $\sin \mathrm{x}$ as second function
$
\begin{aligned}
& =-\sin ^{n-1} x \cos x+\int(n-1) \sin ^{n-2} x \cos ^2 x d x \\
& =-\sin ^{n-1} x \cos x+(n-1) \int \sin ^{n-2} x\left(1-\sin ^2 x\right) d x \\
& =-\sin ^{n-1} x \cos x+(n-1) \int\left(\sin ^{n-2} x-\sin ^n x\right) d x \\
& =-\sin ^{n-1} x \cos x+(n-1) I_{n-2}-(n-1) I_n
\end{aligned}
$
$
\begin{array}{rlrl}
\therefore & n I_n & =-\sin ^{n-1} x \cos x+(n-1) I_{n-2} \\
\Rightarrow & & I_n & =-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} I_{n-2}
\end{array}
$

Thus, $\int \sin ^n x d x=\frac{-\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$

(b) $\int \tan ^{\mathrm{n}} \mathrm{xdx}$

Let $\quad I_n=\int \tan ^n x d x$
$
\begin{aligned}
\Rightarrow \quad I_n & =\int \tan ^{n-2} x \tan ^2 x d x=\int \tan ^{n-2} x\left(\sec ^2 x-1\right) d x \\
& =\int \tan ^{n-2} x \sec ^2 x-I_{n-2}=\int t^{n-2} d t-I_{n-2}
\end{aligned}
$
where, $\tan x=t \Rightarrow \sec ^2 x d x=d t$
$
\begin{aligned}
& I_n=\frac{t^{n-1}}{n-1}-I_{n-2} \\
& \therefore \quad I_n=\frac{\tan ^{n-1} x}{n-1}-I_{n-2} \\
& \Rightarrow \quad \int \tan ^n x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x
\end{aligned}
$

(c) $\int \cos ^{\mathrm{n}} \mathrm{xdx}$

Let $I_n=\int \cos ^n x d x=\int \cos ^{n-1} x \cos x d x$
Take $\cos ^{n-1} x$ as first function and $\cos x$ as second function.
$
\begin{aligned}
& =\cos ^{n-1} x \sin x+\int(n-1) \cos ^{n-2} x \sin ^2 x d x \\
& =\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x\left(1-\cos ^2 x\right) d x \\
& =\cos ^{n-1} x \sin x+(n-1) I_{n-2}-(n-1) I_n \\
\therefore n I_n & =\cos ^{n-1} x \sin x+(n-1) I_{n-2} \\
\text { or } \int & \cos ^n x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x
\end{aligned}
$

(d) $\int \cot ^n \mathrm{x} d x$

Let $I_n=\int \cot ^n x d x=\int \cot ^{n-2} x \cot ^2 x d x$
$
\begin{aligned}
& =\int \cot ^{n-2} x\left(\csc ^2 x-1\right) d x \\
& =\int \cot ^{n-2} x \csc ^2 x d x-I_{n-2} \\
& =\int t^{n-2} d t-I_{n-2}
\end{aligned}
$
where, $\cot x=t \Rightarrow \csc ^2 x d x=-d t$
$
\begin{aligned}
I_n & =-\frac{\cot ^{n-1} x}{n-1}-I_{n-2} \\
\therefore \quad \int \cot ^n x d x & =-\frac{\cot ^{n-1} x}{n-1}-\int \cot ^{n-2} x d x
\end{aligned}
$

(e) $\int \sec ^n \mathrm{xdx}$

Let $I_n=\int \sec ^n x d x=\int \sec ^{n-2} x \sec ^2 x d x$
Take $\sec ^{\mathrm{n}-2} \mathrm{x}$ as first function and $\sec ^2 \mathrm{x}$ as a second function
$
\left.\begin{array}{l}
\quad \begin{array}{l}
\quad \\
\sec ^{n-2} x \tan x-\int(n-2) \sec ^{n-3} x \sec x \tan x \cdot \tan x d x \\
\\
= \\
\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n-2} x\left(\sec ^2 x-1\right) d x \\
\\
= \\
\sec ^{n-2} x \tan x-(n-2) I_n+(n-2) I_{n-2}
\end{array} \\
\Rightarrow(n-1) I_n=\sec ^{n-2} x \tan x+(n-2) I_{n-2}
\end{array}\right\}
$

(f) $\int \csc ^{\mathrm{n}} \mathrm{x} \mathrm{dx}$

Let $I_n=\int \csc ^n x d x=\int \csc ^{n-2} x \csc ^2 x d x$ $=\csc ^{n-2} x(-\cot x)-\int(n-2) \csc ^{n-2} x\left(\csc ^2 x-1\right) d x$ $=-\csc ^{n-2} x(-\cot x)-(n-2) \int\left(\csc ^n x-\csc ^{n-2} x\right) d x$ $=-\csc ^{n-2} x \cot x-(n-2) I_n+(n-2) I_{n-2}$
$\therefore \quad(n-1) I_n=-\csc ^{n-2} x \cot x+(n-2) I_{n-2}$
or $\quad I_n=-\frac{\csc ^{n-2} x \cot x}{n-1}+\frac{n-2}{n-1} I_{n-2}$
$\therefore \int \csc ^n x d x=-\frac{\csc ^{n-2} x \cot x}{n-1}+\frac{n-2}{n-1} \int \csc ^{n-2} x d x$

 

Reduction Formula (Part 2)

Integration of the type $\int \cos ^{\mathrm{m}} \mathrm{x} \sin \mathrm{nx} \mathbf{d x}$
Let $\mathrm{I}_{\mathrm{m}, \mathrm{n}}=\int \cos ^{\mathrm{m}} \mathrm{x} \sin \mathrm{nx} \mathrm{dx}$
To evaluate this integral, we will use integration by parts method Here, take $\cos ^{\mathrm{m}} \mathrm{x}$ as first function and $\sin \mathrm{nx}$ as second function.
$
\left.\begin{array}{rl}
\quad & =-\frac{\cos ^m x \cos n x}{n}-\frac{m}{n} \int \cos ^{m-1} x \sin x \cos n x d x \\
& =-\frac{\cos ^m x \cos n x}{n}-\frac{m}{n} \int \cos ^{m-1} x\{\sin n x \cos x-\sin (n-1) x\} d x
\end{array}\right] \begin{aligned}
{[\mathrm{using} \sin (n-1) x=\sin n x \cos x-\cos n x \sin x}
\end{aligned} \quad \begin{aligned}
\Rightarrow & \sin x \cos n x=\sin n x \cos x-\sin (n-1) x] \\
& =-\frac{\cos ^m x \cos n x}{n}-\frac{m}{n} \int \cos ^m x \sin n x d x+\frac{m}{n} \int \cos ^{m-1} x \sin (n-1) x d x \\
I_{m, n} & =-\frac{\cos ^m x \cos n x}{n}-\frac{m}{n} I_{m, n}+\frac{m}{n} I_{m-1, n-1}
\end{aligned}
$

$
\begin{aligned}
\Rightarrow \frac{m+n}{n} I_{m, n} & =-\frac{\cos ^m x \cos n x}{n}+\frac{m}{n} I_{m-1, n-1} \\
& \text { or } \quad I_{m, n} \\
& =-\frac{\cos ^m x \cos n x}{m+n}+\frac{m}{m+n} I_{m-1, n-1}
\end{aligned}
$

NOTE :
In a similar way we can also prove the following result
1. $\int \cos ^m x \cos n x d x=\frac{\cos ^m x \sin n x}{m+n}+\frac{m}{m+n} \int \cos ^{m-1} x \cos (n-1) x d x$
2. $\int \sin ^m x \sin n x d x=\frac{n \sin ^m x \cos n x}{m^2-n^2}-\frac{m \sin ^{m-1} x \cos x \cos n x}{m^2-n^2}+\frac{m(m-1)}{m^2-n^2} \int \sin ^{m-2} x \sin n x d x$
3. $\int \sin ^m x \cos n x d x=\frac{n \sin ^m x \sin n x}{m^2-n^2}-\frac{m \sin ^{m-1} x \cos x \cos n x}{m^2-n^2}+\frac{m(m-1)}{m^2-n^2} \int \sin ^{m-2} x \cos n x d x$

 

 

Study it with Videos

Reduction Formula (Part 1)
Reduction Formula (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Reduction Formula (Part 2)

Integral Calculus (Arihant)

Page No. : 475

Line : 21

E-books & Sample Papers

Get Answer to all your questions

Back to top