Careers360 Logo
JEE Main 2025 Answer Key by Aakash Institute Available - Download Free PDF

Trigonometric Integrals - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 21 Questions around this concept.

Solve by difficulty

0π/2sinx1+cosx+sinxdx

Concepts Covered - 2

Trigonometric Integrals (Part 1)

(a) Integral of the form

1. 1acos2x+bsin2xdx
2. 1a+bsin2xdx
3. 1a+bcos2xdx
4. 1a+bsin2x+ccos2xdx

Working Rule:

Step 1: Divide the numerator and denominator both by cos2x.
Step 2 : Put tanx=t,sec2xdx=dt
This substitution will convert the trigonometric integral into an algebraic integral.

After employing these steps the integral will reduce to the form f(t)dtAt2+Bt+C, where f(t) is a polynomial in t.

This integral can be evaluated by methods we studied in previous concepts.

(b) Integral of the form

1. 1asinx+bcosxdx
2. 1a+bsinxdx
3. 1a+bcosxdx,
4. 1asinx+bcosx+cdx

Working Rule:

Write sin x and cos x in terms of tan (x/2) and then substitute for tan (x/2) = t

i.e.

sinx=2tanx/21+tan2x/2 and cosx=1tan2x/21+tan2x/2
replace, tan(x/2) with t
by performing these steps the integral reduces to the form
1a2+bt+cdt which can be solved by the method we studied in previous concepts.

Trigonometric Integrals (Part 2)

(c) Integrals of the form

1. pcosx+qsinx+racosx+bsinx+cdx
2. pcosx+qsinxacosx+bsinxdx

Working Rule:

Express numerator as λ (denominator )+μ( differentiation of denominator )+γ
(pcosx+qsinx+r)=λ(acosx+bsinx+c)+μ(asinx+bcosx)+γ
where λ,μ and y are constants to be determined by comparing the coefficients of sinx,cosx, and constant terms on both sides.
pcosx+qsinx+racosx+bsinx+cdx=λ(acosx+bsinx+c)+μ(asinx+bcosx)+γacosx+bsinx+cdx=λacosx+bsinx+cacosx+bsinx+cdx+μasinx+bcosxacosx+bsinx+cdx+μacosx+bsinx+cdx=λx+μln|acosx+bsinx+c|+μacosx+bsinx+cdx

The last integral on RHS can be evaluated by the methods we studied in the previous concept.

Study it with Videos

Trigonometric Integrals (Part 1)
Trigonometric Integrals (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Integrals (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.19

Line : 32

Trigonometric Integrals (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.20

Line : 20

E-books & Sample Papers

Get Answer to all your questions

Back to top