Engineering Entrance Exams Application Date 2025 & Details

Trigonometric Integrals - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 15 Questions around this concept.

Solve by difficulty

If \int \frac{2\cos x-\sin x+\lambda }{\cos x+\sin x-2}dx=A\: ln\left | \cos x+\sin x-2 \right |+Bx+CThen the ordered triplet A,B,\lambda is

Concepts Covered - 2

Trigonometric Integrals (Part 1)

(a) Integral of the form

\\\mathrm{1.\;\;\int \frac{1}{a \cos ^{2} x+b \sin ^{2} x} \;d x\;\;\;\;\;\;}\\\\\mathrm{2.\;\;\int \frac{1}{a +b \sin ^{2} x} \;d x}\\\\\mathrm{3.\;\;\int \frac{1}{a+b \cos ^{2} x} \;d x\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\\\\mathrm{4.\;\;\int \frac{1}{a+b \sin ^{2} x+c \cos ^{2} x} \;d x}

 

Working Rule:

Step 1 : Divide numerator and denominator both by cos2x.

Step 2 : Put tan x = t,  sec2x dx = dt

This substitution will convert the trigonometric integral into algebraic integral.

After employing these steps the integral will reduce to the form \int \frac{f(t) d t}{A t^{2}+Bt+C} , where f(t) is a polynomial in t.

This integral can be evaluated by methods we studied in previous concepts.

 

(b) Integral of the form

\\\mathrm{1.\;\;\int \frac{1}{a \sin x+b \cos x} \;d x}\\\\\mathrm{2.\;\;\int \frac{1}{a+b \sin x} \;d x}\\\\\mathrm{3.\;\;\int \frac{1}{a+b \cos x} \;d x, }\\\\\mathrm{4.\;\;\int \frac{1}{a \sin x+b \cos x+c}\; d x}

 

Working Rule:

Write sin x and cos x in terms of tan (x/2) and then substitute for tan (x/2) = t

i.e.

\\ \sin x=\frac{2 \tan x / 2}{1+\tan ^{2} x / 2} \text { and } \cos x=\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2}\\\\\mathrm{replace,\;\;\tan(x/2)\;with\;\mathit{t}}\\\text {by performing these steps the integral reduces to the form}\\\\\mathrm{\int \frac{1}{a t^{2}+b t+c} d t\;\;which \;can\;be\;solved\;by\;method\;we\;studied\;in}\\\mathrm{previous\;concepts.}

Trigonometric Integrals (Part 2)

(c) Integrals of the form

\\\mathrm{1.\;\;\int \frac{p \cos x+q \sin x+r}{a \cos x+b \sin x+c} \;d x}\\\\\\\mathrm{2.\;\;\int \frac{p \cos x+q \sin x}{a \cos x+b \sin x}\,\, d x}

 

Working Rule:

\\\mathrm{Express \;numerator\;as\;{\lambda(\text { denominator })+\mu(\text { differentiation of denominator })+\gamma}}

\\\Rightarrow \mathrm{\left (p\cos x+q\sin x+r \right )=\lambda\left ( a\cos x+b\sin x+c \right )+\mu\left ( -a\sin x+b\cos x \right )+\gamma}

where λ, μ and γ are constants to be determined by comparing the coefficients of sinx, cos x and constant
terms on both sides.

\\\mathrm{\int \frac{p \cos x+q \sin x+r}{a \cos x+b \sin x+c} \;d x=\int \frac{\lambda\left ( a\cos x+b\sin x+c \right )+\mu\left ( -a\sin x+b\cos x \right )+\gamma}{a\cos x+b\sin x+c}dx}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\lambda\int\frac{a\cos x+b\sin x+c}{a\cos x+b\sin x+c}dx+\mu\int\frac{-a\sin x+b\cos x}{a\cos x+b\sin x+c}dx\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+\int \frac{\mu}{a\cos x+b\sin x+c}dx}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}=\lambda x+\mu\ln\left | a\cos x+b\sin x+c \right |+\int \frac{\mu}{a\cos x+b\sin x+c}dx

The last integral on RHS can be evaluated by the methods we studied in previous concept.

Study it with Videos

Trigonometric Integrals (Part 1)
Trigonometric Integrals (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Integrals (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.19

Line : 32

Trigonometric Integrals (Part 2)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.20

Line : 20

E-books & Sample Papers

Get Answer to all your questions

Back to top