JEE Main Official Answer Key 2025 Release Date Soon - How to Download PDF

Integration By Parts Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Integration by Parts is considered one the most difficult concept.

  • 51 Questions around this concept.

Solve by difficulty

If  \int f(x)dx=\Psi (x),then\; \int x^{5}f(x^{3})dx   is equal to :

 If 2\int_{0}^{1}\tan ^{-1}xdx = \int_{0}^{1}\cot ^{-1}(1-x+x^{2})dx , then \int_{0}^{1}\tan ^{-1}(1-x+x^{2})dx is equal to : 

If $\int_0^{\frac{\pi}{3}} \cos ^4 x d x=a \pi+b \sqrt{3}$, where $a$ and $b$ are rational numbers, then $9 a+8 b$ is equal to

JEE Main 2025: Rank Predictor |  College Predictor

JEE Main 2025 Memory Based Question: Jan 29- Shift 1 | shift-2 | Jan 28- Shift 1 Shift-2 | Jan 22, 23 & 24 (Shift 1 & 2)

JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs

  $\int e ^{2x} \left ( \frac{\sin 2x - 1 }{1 - \cos 2x }\right ) dx = e ^{ ax }/a f ( x ) + C \\\\ Then\: \: \: f'( x ) = ?$

$\int e^x(x+1) d x=x f(x)+C . T h e n f(0)$ is

$\int e^x(x+1) d x=?$

  If  $f (x) ' = xe ^ x \: \: \: and \: \: \: \int f ( x ) = g ( x ) \: \: \: then \: \: \: g ( x ) / f (x) ' \: \: is$

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

$\int ln [ (x^2 + 1 )^ 2 ] dx = A f(x) + B \tan ^{-1} g(x ) + C$ Then g(x) ? 

$\int x^n ln ( x^ n ) dx = f (x ) + C$  If  f( x ) = 0 , then x ?

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

$\int \sin (\ln x)+\cos (\ln x) d x$ is equals to

Concepts Covered - 2

Integration by Parts

To evaluate the integration of a function which is a product of two functions, we use the method of integration by parts.

If two functions of x, u, and v are given, then

 $\int u v d x=u \times \int v d x-\int\left\{\frac{d u}{d x} \int v d x\right\} d x$

i.e.

The integral of the product of two functions =

( first function) X ( integral of second function ) - integral of (differential of first function X integral of second function).

Proof:

Let, h(x) = f(x) . g(x), then by using the product rule, we obtain, h′(x) = f ′(x) g(x) + g′(x) f(x). Let’s now integrate both sides of this equation:

$
\int h^{\prime}(x) d x=\int\left(g(x) f^{\prime}(x)+f(x) g^{\prime}(x)\right) d x
$
this gives us,
$
h(x)=f(x) g(x)=\int g(x) f^{\prime}(x) d x+\int f(x) g^{\prime}(x) d x
$

Now we solve for $\int f(x) g^{\prime}(x) d x$
$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$

By making the substitutions $\mathrm{u}=\mathrm{f}(\mathrm{x})$ and $\mathrm{v}=\mathrm{g}^{\prime}(\mathrm{x})$ which in turn make $g(x)=\int v d x$, we have the more compact form
$
\int \mathrm{uvdx}=\mathrm{u} \int \mathrm{vdx}-\int\left\{\frac{\mathrm{du}}{\mathrm{dx}} \int \mathrm{vdx}\right\} \mathrm{dx}
$

Important point for selecting first function (u) and second function (v)

Usually, we use the following preference order for selecting the first function. (Inverse, Logarithmic, Algebraic, Trigonometric, Exponential). In the above-stated order, the function on the left is always chosen as the first function. This rule is called as ILATE.

For example, if an integral contains a logarithmic function and an algebraic function, we should choose the logarithmic function as the first function (u). 

Application of of Integration by Parts

One of the interesting applications of integration by part is:

$\int \mathbf{e}^{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x})+\mathbf{f}^{\prime}(\mathbf{x})\right\} \mathbf{d x}=\mathbf{e}^{\mathbf{x}} \mathbf{f}(\mathbf{x})+\mathbf{C}$

Proof:

We have given $\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}$
$
=\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}
$

In first integral, take $\mathrm{f}(\mathrm{x})$ as first function and $\mathrm{e}^{\mathrm{x}}$ as second function
$
\begin{aligned}
& =\mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}}-\int \mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}+\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}+C \\
& =\mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}}+C
\end{aligned}
$

Thus, to evaluate the integrals of the type $\int e^x\left\{f(x)+f^{\prime}(x)\right\} d x$ we first express the integral as the sum of two integrals $\int e^x f(x) d x$ and $\int e^x f^{\prime}(x) d x$ and then integrate the integral involving $e^x f(x)$ as integral by parts taking $e^x$ as a second function.

General Formula

$
\int \mathrm{e}^{g(x)} \cdot\left\{f(x) g^{\prime}(x)+f^{\prime}(x)\right\} d x=f(x) \cdot e^{g(x)}+C
$

Integration of $\int e^{a x} \cdot \sin (b x) d x$ and $\int e^{a x} \cdot \cos (b x) d x$

Let, $\quad I=\int e^{a x}(\sin b x) d x$
take $\sin b x$ as first function and $\mathrm{e}^{\mathrm{ax}}$ as second
$
\begin{aligned}
& =\sin b x \cdot\left(\frac{e^{a x}}{a}\right)-\int b \cos b x \cdot \frac{e^{a x}}{a} d x \\
& =\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a}\left\{\cos b x \cdot \frac{e^{a x}}{a}-\int(-b \sin b x) \cdot \frac{e^{a x}}{a} d x\right\} \\
& =\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a^2} \cos b x \cdot e^{a x}-\frac{b^2}{a^2} \int \sin b x \cdot e^{a x} d x \\
& I=\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a^2} \cos b x \cdot e^{a x}-\frac{b^2}{a^2} I \\
& \therefore \quad \mathrm{I}+\frac{\mathrm{b}^2}{\mathrm{a}^2} \mathrm{I}=\frac{1 \cdot \mathrm{e}^{\mathrm{ax}}}{\mathrm{a}^2} \cdot(\mathrm{a} \sin \mathrm{bx}-\mathrm{b} \cos \mathrm{bx}) \\
& \Rightarrow \quad \mathrm{I}=\frac{\mathrm{e}^{\mathrm{ax}}}{\mathrm{a}^2+\mathrm{b}^2}(\mathrm{a} \sin \mathrm{bx}-\mathrm{b} \cos \mathrm{bx})+\mathrm{C}
\end{aligned}
$

In the same way,
$
\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^2+b^2}(a \cos b x+b \sin b x)+C
$

 

Study it with Videos

Integration by Parts
Application of of Integration by Parts

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration by Parts

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.25

Line : 41

Application of of Integration by Parts

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.28

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top