Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
Integration by Parts is considered one the most difficult concept.
74 Questions around this concept.
The value of $k \in \mathbb{N}$ for which the integral
$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}, \text { satisfies } 147 I_{20}=148 I_{21}
$
The primitive of $\log x$ will be
$\int e^{x}\,\frac{x-1}{(x+1)^{3}} dx=$
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | High Scoring Topics
Apply to TOP B.Tech/BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a twice differentiable function such that $f(2)=1$. If $\mathrm{F}(\mathrm{x})=\mathrm{x} f(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$, $\int_0^2 x F^{\prime}(x) d x=6$ and $\int_0^2 x^2 F^{\prime \prime}(x) d x=40$, then $F^{\prime}(2)+\int_0^2 F(x) d x$ is equal to :
To evaluate the integration of a function which is a product of two functions, we use the method of integration by parts.
If two functions of x, u, and v are given, then
$\int u v d x=u \times \int v d x-\int\left\{\frac{d u}{d x} \int v d x\right\} d x$
i.e.
The integral of the product of two functions =
( first function) X ( integral of second function ) - integral of (differential of first function X integral of second function).
Proof:
Let, h(x) = f(x) . g(x), then by using the product rule, we obtain, h′(x) = f ′(x) g(x) + g′(x) f(x). Let’s now integrate both sides of this equation:
$
\int h^{\prime}(x) d x=\int\left(g(x) f^{\prime}(x)+f(x) g^{\prime}(x)\right) d x
$
this gives us,
$
h(x)=f(x) g(x)=\int g(x) f^{\prime}(x) d x+\int f(x) g^{\prime}(x) d x
$
Now we solve for $\int f(x) g^{\prime}(x) d x$
$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$
By making the substitutions $\mathrm{u}=\mathrm{f}(\mathrm{x})$ and $\mathrm{v}=\mathrm{g}^{\prime}(\mathrm{x})$ which in turn make $g(x)=\int v d x$, we have the more compact form
$
\int \mathrm{uvdx}=\mathrm{u} \int \mathrm{vdx}-\int\left\{\frac{\mathrm{du}}{\mathrm{dx}} \int \mathrm{vdx}\right\} \mathrm{dx}
$
Important point for selecting first function (u) and second function (v)
Usually, we use the following preference order for selecting the first function. (Inverse, Logarithmic, Algebraic, Trigonometric, Exponential). In the above-stated order, the function on the left is always chosen as the first function. This rule is called as ILATE.
For example, if an integral contains a logarithmic function and an algebraic function, we should choose the logarithmic function as the first function (u).
One of the interesting applications of integration by part is:
$\int \mathbf{e}^{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x})+\mathbf{f}^{\prime}(\mathbf{x})\right\} \mathbf{d x}=\mathbf{e}^{\mathbf{x}} \mathbf{f}(\mathbf{x})+\mathbf{C}$
Proof:
We have given $\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}$
$
=\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}
$
In first integral, take $\mathrm{f}(\mathrm{x})$ as first function and $\mathrm{e}^{\mathrm{x}}$ as second function
$
\begin{aligned}
& =\mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}}-\int \mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}+\int \mathrm{e}^{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}+C \\
& =\mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}}+C
\end{aligned}
$
Thus, to evaluate the integrals of the type $\int e^x\left\{f(x)+f^{\prime}(x)\right\} d x$ we first express the integral as the sum of two integrals $\int e^x f(x) d x$ and $\int e^x f^{\prime}(x) d x$ and then integrate the integral involving $e^x f(x)$ as integral by parts taking $e^x$ as a second function.
General Formula
$
\int \mathrm{e}^{g(x)} \cdot\left\{f(x) g^{\prime}(x)+f^{\prime}(x)\right\} d x=f(x) \cdot e^{g(x)}+C
$
Integration of $\int e^{a x} \cdot \sin (b x) d x$ and $\int e^{a x} \cdot \cos (b x) d x$
Let, $\quad I=\int e^{a x}(\sin b x) d x$
take $\sin b x$ as first function and $\mathrm{e}^{\mathrm{ax}}$ as second
$
\begin{aligned}
& =\sin b x \cdot\left(\frac{e^{a x}}{a}\right)-\int b \cos b x \cdot \frac{e^{a x}}{a} d x \\
& =\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a}\left\{\cos b x \cdot \frac{e^{a x}}{a}-\int(-b \sin b x) \cdot \frac{e^{a x}}{a} d x\right\} \\
& =\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a^2} \cos b x \cdot e^{a x}-\frac{b^2}{a^2} \int \sin b x \cdot e^{a x} d x \\
& I=\frac{1}{a} \sin b x \cdot e^{a x}-\frac{b}{a^2} \cos b x \cdot e^{a x}-\frac{b^2}{a^2} I \\
& \therefore \quad \mathrm{I}+\frac{\mathrm{b}^2}{\mathrm{a}^2} \mathrm{I}=\frac{1 \cdot \mathrm{e}^{\mathrm{ax}}}{\mathrm{a}^2} \cdot(\mathrm{a} \sin \mathrm{bx}-\mathrm{b} \cos \mathrm{bx}) \\
& \Rightarrow \quad \mathrm{I}=\frac{\mathrm{e}^{\mathrm{ax}}}{\mathrm{a}^2+\mathrm{b}^2}(\mathrm{a} \sin \mathrm{bx}-\mathrm{b} \cos \mathrm{bx})+\mathrm{C}
\end{aligned}
$
In the same way,
$
\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^2+b^2}(a \cos b x+b \sin b x)+C
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"