VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
18 Questions around this concept.
$\qquad$ is equal to
$
\int \tan ^{-1} \sqrt{x d x}
$
is equal to
$
\int 4^2 3^2 d x
$
equals
JEE Main 2025: Admit Card Link | Session-1: Most Scoring Concepts | Official Question Paper
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
The value of $
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{4 n^2-1}}+\frac{1}{\sqrt{4 n^2-4}}+\ldots+\frac{1}{\sqrt{4 n^2-n^2}}\right)
$is
Fundamental Formulae (Inverse Trigonometric Functions)
1. $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
2. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{-1}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}} \Rightarrow \int \frac{-1}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}} \mathrm{dx}=\cos ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
3. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{a}} \tan ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{1}{\mathrm{a}^2+\mathrm{x}^2} \Rightarrow \int \frac{\mathrm{dx}}{\mathrm{a}^2+\mathrm{x}^2}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
4. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{a}} \cot ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{-1}{\mathrm{a}^2+\mathrm{x}^2} \Rightarrow \int \frac{-1}{\mathrm{a}^2+\mathrm{x}^2} \mathrm{dx}=\frac{1}{\mathrm{a}} \cot ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
5. $\frac{d}{d x}\left(\frac{1}{a} \sec ^{-1} \frac{x}{a}\right)=\frac{1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C$
6. $\frac{d}{d x}\left(\frac{1}{a} \csc ^{-1} \frac{x}{a}\right)=\frac{-1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{-d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \csc ^{-1}\left(\frac{x}{a}\right)+C$
You can derive all the above results using the substitution method.
For example, to get the result (1), substitute x = a sin Ө or x = a cos Ө and solve
"Stay in the loop. Receive exam news, study resources, and expert advice!"