JEE Main 2025 April 3 Exam Analysis: Check Shift-Wise Paper Difficulty Level

Fundamental Formulae of Indefinite Integration (Inverse Trigonometric Functions) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 18 Questions around this concept.

Solve by difficulty

$\qquad$ is equal to

$
\int \tan ^{-1} \sqrt{x d x}
$

is equal to

 

$
\int 4^2 3^2 d x
$

equals

JEE Main Session 2 Memory Based Questions: April 2- Shift 1 | Shift-2

JEE Main 2025: Mock Tests | PYQsRank PredictorCollege Predictor | Admit Card Link

New: Meet Careers360 experts in your city | Official Question Papee-Session 1

Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT

The value of $
\lim  _{n \rightarrow \infty}\left(\frac{1}{\sqrt{4 n^2-1}}+\frac{1}{\sqrt{4 n^2-4}}+\ldots+\frac{1}{\sqrt{4 n^2-n^2}}\right)
$is

Concepts Covered - 1

Fundamental Formulae of Indefinite Integration (Inverse Trigonometric Functions)

Fundamental Formulae (Inverse Trigonometric Functions)

1. $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
2. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{-1}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}} \Rightarrow \int \frac{-1}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}} \mathrm{dx}=\cos ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
3. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{a}} \tan ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{1}{\mathrm{a}^2+\mathrm{x}^2} \Rightarrow \int \frac{\mathrm{dx}}{\mathrm{a}^2+\mathrm{x}^2}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
4. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{a}} \cot ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)=\frac{-1}{\mathrm{a}^2+\mathrm{x}^2} \Rightarrow \int \frac{-1}{\mathrm{a}^2+\mathrm{x}^2} \mathrm{dx}=\frac{1}{\mathrm{a}} \cot ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
5. $\frac{d}{d x}\left(\frac{1}{a} \sec ^{-1} \frac{x}{a}\right)=\frac{1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C$
6. $\frac{d}{d x}\left(\frac{1}{a} \csc ^{-1} \frac{x}{a}\right)=\frac{-1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{-d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \csc ^{-1}\left(\frac{x}{a}\right)+C$

You can derive all the above results using the substitution method.

For example, to get the result (1), substitute  x = a sin Ө or x = a cos Ө and solve 

Study it with Videos

Fundamental Formulae of Indefinite Integration (Inverse Trigonometric Functions)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Fundamental Formulae of Indefinite Integration (Inverse Trigonometric Functions)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.17

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top