JEE Main 2025 Cutoff for CSE - Qualifying Marks for NIT, IIIT, GFTI

Integration by Substitution - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 69 Questions around this concept.

Solve by difficulty

$\int_x \frac{x^9}{\left(4 x^2+1\right)^6} d x$ is equal to

Concepts Covered - 1

Integration Using Substitution

The method of substitution is one of the basic methods for calculating indefinite integrals. 

Substitution - change of variable

To solve the integrate of the form
$
I=\int f(g(x)) \cdot g^{\prime}(x) d x
$
where $g(x)$ is continuously differentiable function.
put$\mathrm{g}(\mathrm{x})=\mathrm{t},\quad\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$
After substitution, we get $\int \mathrm{f}(\mathrm{t}) \mathrm{dt}$.
Evalute this integration and substitute back the value of $t$.

Some standard results using substitution

1.$\int\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\mathrm{dx}=\log _{\mathrm{e}}|\mathrm{f}(\mathrm{x})|+\mathrm{c}$
2.$\int\mathrm{f}^{\prime}(\mathrm{x})(\mathrm{f}(\mathrm{x}))^{\mathrm{n}} \mathrm{dx}=\frac{(\mathrm{f}(\mathrm{x}))^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{c}$

Integration of the function f(ax + b) 

If $\int f(x) d x=F(x)+C$ and $a, b$ are constants, then
$
\int f(a x+b) d x=\frac{1}{a} F(a x+b)+C
$
we have, $I=\int f(a x+b) d x$
let $\mathrm{ax}+\mathrm{b}=\mathrm{t}$, then $\mathrm{adx}=\mathrm{dt}$
$
\begin{aligned}
\therefore \quad \mathrm{I} & =\int \mathrm{f}(\mathrm{ax}+\mathrm{b}) \mathrm{dx} \\
& =\frac{1}{\mathrm{a}} \int \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
& =\frac{1}{\mathrm{a}} \mathrm{~F}(\mathrm{t})+\mathrm{c} \\
& =\frac{1}{\mathrm{a}} \mathrm{~F}(\mathrm{ax}+\mathrm{b})+\mathrm{c}
\end{aligned}
$

For example:

1. $\int \cos 2 \mathrm{xdx}=\frac{1}{2} \sin 2 \mathrm{x}+\mathrm{c}$
2. $\int \frac{1}{x+1} d x=\log _e|x+1|+c$
3.$\int\mathrm{e}^{2\mathrm{x}-3}\mathrm{dx}=\frac{1}{2}\mathrm{e}^{2 \mathrm{x}-3}+\mathrm{c}$

Also, Integrals of tan x, cot x, sec x, cosec x  all these can be evaluated using the result :

$\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

(i)
$
\begin{aligned}
\int \tan x d x= & \int \frac{\sec x \tan x}{\sec x} d x \\
\Rightarrow \quad & \int \tan x d x=\log |\sec x|+C
\end{aligned}
$
(ii) $\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\log |\sin x|+C$
(iii)
$
\begin{aligned}
\int \sec x d x= & \int \frac{\sec x(\sec x+\tan x)}{\sec x+\tan x} d x=\int \frac{\sec ^2 x \sec x+\tan x}{\sec x+\tan x} d x \\
\Rightarrow \quad & \int \sec x d x=\log |\sec x+\tan x|+C
\end{aligned}
$
(iv)
$
\begin{aligned}
& \int \csc x d x=\int \frac{\csc x(\csc x-\cot x)}{\csc x-\cot x} d x=\int \frac{\csc ^2 x-\csc x \cot x}{\csc x-\cot x} d x \\
& \Rightarrow \quad \int \csc x d x=\log |\csc x-\cot x|+C
\end{aligned}
$

Study it with Videos

Integration Using Substitution

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration Using Substitution

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.4

Line : 39

E-books & Sample Papers

Get Answer to all your questions

Back to top