JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Integration by Substitution - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 58 Questions around this concept.

Solve by difficulty

Let x^2 \neq n \pi-1, n \in N then

\int x \sqrt{\frac{2 \sin \left(x^2+1\right)-\sin 2\left(x^2+1\right)}{2 \sin \left(x^2+1\right)+\sin 2\left(x^2+1\right)}} d x is equal to 

Find the integral of \int 4x \sin \left ( x^{2}-1 \right )dx:

The integral value of \int \left ( 4x+1 \right )^3dx:

Integrate the term sec^{2}ax with respect to x.

If f(x)=\int e^x\left(\tan ^{-1} x+\frac{2 x}{\left(1+x^2\right)^2}\right) d x, f(0)=0, then the value of f(1) is

The integral $\int \frac{\left(x^8-x^2\right) d x}{\left(x^{12}+3 x^6+1\right) \tan ^{-1}\left(x^3+\frac{1}{x^3}\right)}$ is equal to:

For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, If $y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$, and $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

Concepts Covered - 1

Integration Using Substitution

The method of substitution is one of the basic methods for calculating indefinite integrals. 

Substitution - change of variable

To solve the integrate of the form
$
I=\int f(g(x)) \cdot g^{\prime}(x) d x
$
where $g(x)$ is continuously differentiable function.
put$\mathrm{g}(\mathrm{x})=\mathrm{t},\quad\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{dt}$
After substitution, we get $\int \mathrm{f}(\mathrm{t}) \mathrm{dt}$.
Evalute this integration and substitute back the value of $t$.

Some standard results using substitution

1.$\int\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\mathrm{dx}=\log _{\mathrm{e}}|\mathrm{f}(\mathrm{x})|+\mathrm{c}$
2.$\int\mathrm{f}^{\prime}(\mathrm{x})(\mathrm{f}(\mathrm{x}))^{\mathrm{n}} \mathrm{dx}=\frac{(\mathrm{f}(\mathrm{x}))^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{c}$

Integration of the function f(ax + b) 

If $\int f(x) d x=F(x)+C$ and $a, b$ are constants, then
$
\int f(a x+b) d x=\frac{1}{a} F(a x+b)+C
$
we have, $I=\int f(a x+b) d x$
let $\mathrm{ax}+\mathrm{b}=\mathrm{t}$, then $\mathrm{adx}=\mathrm{dt}$
$
\begin{aligned}
\therefore \quad \mathrm{I} & =\int \mathrm{f}(\mathrm{ax}+\mathrm{b}) \mathrm{dx} \\
& =\frac{1}{\mathrm{a}} \int \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
& =\frac{1}{\mathrm{a}} \mathrm{~F}(\mathrm{t})+\mathrm{c} \\
& =\frac{1}{\mathrm{a}} \mathrm{~F}(\mathrm{ax}+\mathrm{b})+\mathrm{c}
\end{aligned}
$

For example:

1. $\int \cos 2 \mathrm{xdx}=\frac{1}{2} \sin 2 \mathrm{x}+\mathrm{c}$
2. $\int \frac{1}{x+1} d x=\log _e|x+1|+c$
3.$\int\mathrm{e}^{2\mathrm{x}-3}\mathrm{dx}=\frac{1}{2}\mathrm{e}^{2 \mathrm{x}-3}+\mathrm{c}$

Also, Integrals of tan x, cot x, sec x, cosec x  all these can be evaluated using the result :

$\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

(i)
$
\begin{aligned}
\int \tan x d x= & \int \frac{\sec x \tan x}{\sec x} d x \\
\Rightarrow \quad & \int \tan x d x=\log |\sec x|+C
\end{aligned}
$
(ii) $\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\log |\sin x|+C$
(iii)
$
\begin{aligned}
\int \sec x d x= & \int \frac{\sec x(\sec x+\tan x)}{\sec x+\tan x} d x=\int \frac{\sec ^2 x \sec x+\tan x}{\sec x+\tan x} d x \\
\Rightarrow \quad & \int \sec x d x=\log |\sec x+\tan x|+C
\end{aligned}
$
(iv)
$
\begin{aligned}
& \int \csc x d x=\int \frac{\csc x(\csc x-\cot x)}{\csc x-\cot x} d x=\int \frac{\csc ^2 x-\csc x \cot x}{\csc x-\cot x} d x \\
& \Rightarrow \quad \int \csc x d x=\log |\csc x-\cot x|+C
\end{aligned}
$

Study it with Videos

Integration Using Substitution

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration Using Substitution

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.4

Line : 39

E-books & Sample Papers

Get Answer to all your questions

Back to top