JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Integration as an Inverse Process of Differentiation - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Integration as Reverse Process of Differentiation is considered one the most difficult concept.

  • 44 Questions around this concept.

Solve by difficulty

The integral value of \int x^{4}dx is

The integral of \int4^{x}dx is

\text { If } \int x^{26} \cdot(x-1)^{17} \cdot(5 x-3) d x=\frac{x^{27} \cdot(x-1)^{18}}{k}+C where C is a constant of integration, then the value of k is equal to

\text { The integral } \int\left(\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right) \log _2 x d x \text { is equal to }:

If I(x)=\int e^{\sin ^2 x}(\cos x \sin 2 x-\sin x)  dx and I (0) = 1, then \mathrm{I}\left(\frac{\pi}{3}\right) is equal to :

 

Concepts Covered - 1

Integration as Reverse Process of Differentiation

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. 

For example,

$\begin{aligned} & \frac{d}{d x}(\sin x)=\cos x \\ & \frac{d}{d x}\left(x^2\right)=2 x \\ & \frac{d}{d x}\left(e^x\right)=e^x\end{aligned}$

In the above example, the function cos(x) is the derivative of sin(x). We say that sin(x) is an anti-derivative (or an integral) of cos(x). Similarly, x2 and eare the antiderivatives (or integrals) of 2x and ex respectively.  

Also note that the derivative of a constant  (C) is zero. So we can write the above examples as:

$\begin{aligned} & \frac{d}{d x}(\sin x+c)=\cos x \\ & \frac{d}{d x}\left(x^2+c\right)=2 x \\ & \frac{d}{d x}\left(e^x+c\right)=e^x\end{aligned}$

Thus, the anti-derivatives (or integrals) of the above functions are not unique. Actually, there exist infinitely many anti-derivatives of each of these functions which can be obtained by selecting C arbitrarily from the set of real numbers. 

For this reason, C is referred to as an arbitrary constant. In fact, C is the parameter by varying which one gets different anti-derivatives (or integrals) of the given function. 

If the function F(x) is an antiderivative of f(x), then the expression F(x) + C is the indefinite integral of the function f(x) and is denoted by the symbol ∫ f(x) dx. 

By definition,

$\int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{x})+\mathrm{c}, \quad$ where $\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ and ' $\mathrm{c}^{\prime}$ is constant.

Here, 

\begin{array}{c||c} \hline\\ \mathbf { Symbols/Terms/Phrases } & \mathbf{Meaning} \\\\ \hline \hline \\\int f(x) d x & {\text { Integral of } f \text { with respect to } x} \\\\ \hline \\f(x) \text { in } \int f(x) d x & {\text { Integrand }} \\\\\hline \\ x \text { in } \int f(x) d x & {\text { Variable of integration }} \\\\\hline \\ \text{An integral of f } & {\text { A function F such that F'(x) = f(x)}}\\\\\hline \end{array}

Rules of integration

f(x) and g(x) are functions with antiderivatives ∫ f(x) and  ∫ g(x) dx. Then,

(a) $\int \mathrm{kf}(x) d x=k \int f(x) d x$ for any constant $k$.
(b) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
(c) $\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$

Standard Integration Formulae

Since,$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{x}))=\mathrm{f}(\mathrm{x}) \Leftrightarrow \int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{x})+\mathrm{c}$

Based on this definition and various standard formulas (which we studied in Limit, Continuity, and Differentiability) we can obtain the following important integration formulae, 

1.$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{kx})=\mathrm{k}\Rightarrow\int\mathrm{kdx}=\mathrm{kx}+\mathrm{C}$, where k is a constant
2.$\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}\right)=\mathrm{x}^{\mathrm{n}}, \mathrm{n} \neq-1 \Rightarrow \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C}, \mathrm{n} \neq-1$
3. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\mathrm{x}|)=\frac{1}{\mathrm{x}} \Rightarrow \int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|+\mathrm{C}$, when $\mathrm{x} \neq 0$
4. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}} \Rightarrow \int \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{e}^{\mathrm{x}}+\mathrm{C}$
5.$\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{a}^{\mathrm{x}}}{\log_{\mathrm{e}}\mathrm{a}}\right)=\mathrm{a}^{\mathrm{x}}, \mathrm{a}>0, \mathrm{a} \neq 1 \Rightarrow \int \mathrm{a}^{\mathrm{x}} \mathrm{dx}=\frac{\mathrm{a}^{\mathrm{x}}}{\log _{\mathrm{e}} \mathrm{a}}+\mathrm{C}$

Study it with Videos

Integration as Reverse Process of Differentiation

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Integration as Reverse Process of Differentiation

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.1

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top