Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Some Special Integration, Application of Special Integral Formula (Part 1) is considered one of the most asked concept.
46 Questions around this concept.
$\int \frac{2^{\mathrm{x}}}{\sqrt{1-4^{\mathrm{x}}}} \mathrm{dx}$ equals
$\int \frac{x+\sin x}{1+\cos x} d x$ is equal to
$\int \mathrm{c}^2\left(\frac{1-x}{1+x^2}\right)^2 d x_{\text {is equal to }}$
JEE Main 2025: Rank Predictor | Admit Card Link
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
$\begin{aligned} & \text { 1. } \int \frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{a}^2}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C} \\ & \text { put } \mathrm{x}=\mathrm{a} \tan \theta, \text { then } \mathrm{dx}=\mathrm{asec}^2 \theta \mathrm{~d} \theta \\ & \begin{aligned} \therefore \int \frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{a}^2} & =\int \frac{\mathrm{asec}^2 \theta}{\mathrm{a}^2+\mathrm{a}^2 \tan ^2 \theta} \mathrm{~d} \theta \\ & =\int \frac{\mathrm{asec}^2 \theta}{\mathrm{a}^2\left(1+\tan ^2 \theta\right)} \mathrm{d} \theta \\ & =\frac{1}{\mathrm{a}} \int \mathrm{d} \theta=\frac{1}{\mathrm{a}} \theta+\mathrm{C}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}\end{aligned}\end{aligned}$
2. $\int \frac{\mathrm{dx}}{\mathrm{x}^2-\mathrm{a}^2}=\frac{1}{2 \mathrm{a}} \log \left|\frac{\mathrm{x}-\mathrm{a}}{\mathrm{x}+\mathrm{a}}\right|+\mathrm{C}$
we can rewrite the above integral as
$
\begin{aligned}
\int \frac{d x}{x^2-a^2} & =\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right) d x \\
& =\frac{1}{2 a}(\log |x-a|-\log |x+a|)+c \\
& =\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C
\end{aligned}
$
3. $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
4. $\int \frac{d x}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
5. $\int \frac{d x}{\sqrt{a^2+x^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+C$
6. $\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^2-\mathrm{a}^2}}=\log \left|\mathrm{x}+\sqrt{\mathrm{x}^2-\mathrm{a}^2}\right|+\mathrm{C}$
7. $\int \sqrt{\mathrm{a}^2-\mathrm{x}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{a}^2-\mathrm{x}^2}+\frac{1}{2} \mathrm{a}^2 \sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
8. $\int \sqrt{\mathrm{a}^2+\mathrm{x}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{a}^2+\mathrm{x}^2}+\frac{1}{2} \mathrm{a}^2 \log \left|\mathrm{x}+\sqrt{\mathrm{a}^2+\mathrm{x}^2}\right|+C$
9. $\int \sqrt{\mathrm{x}^2-\mathrm{a}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{x}^2-\mathrm{a}^2}-\frac{1}{2} \mathrm{a}^2 \log \left|\mathrm{x}+\sqrt{\mathrm{x}^2-\mathrm{a}^2}\right|+C$
Following are some important substitutions useful in evaluating integrals.
\begin{array}{c||c|}
\text { Expression } & \text { Substitution } \\
\hline a^2+x^2 & x=a \tan \theta \text { or } x=a \cot \theta \\
\hline a^2-x^2 & x=a \sin \theta \text { or } x=a \cos \theta \\
\hline x^2-a^2 & x=a \sec \theta \text { or } x=a \csc \theta \\
\hline \sqrt{\frac{a-x}{a+x}} \text { or } \sqrt{\frac{a+x}{a-x}} & x=a \cos 2 \theta \\
\hline
\end{array}
Integration of the type
(i) $\int \frac{(p x+q) d x}{a x^2+b x+c}$
(ii) $\int \frac{(p x+q)}{\sqrt{a x^2+b x+c}} d x$
(iii) $\int(p x+q) \sqrt{a x^2+b x+c} d x$
Express the linear factor $p x+q$ in terms of the derivative of quadratic factor $a x^2+b x+c$
i.e.
$
\begin{aligned}
\mathrm{px}+\mathrm{q} & =\lambda \cdot \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}\right)+\mu \\
\Rightarrow \quad \mathrm{px}+\mathrm{q} & =\lambda(2 \mathrm{ax}+\mathrm{b})+\mu
\end{aligned}
$
Find $\lambda$ and $\mu$ and replace $(p x+q)$ by $\lambda(2 a x+b)+\mu$
Integration of the type
1. $\int \frac{a x^2+b x+c}{\left(p x^2+q x+r\right)} d x$
2. $\int \frac{\left(a x^2+b x+c\right)}{\sqrt{\mathrm{px}^2+\mathrm{qx}+\mathrm{r}}} \mathrm{dx}$
3. $\int\left(\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}\right) \sqrt{\mathrm{px}^2+\mathrm{qx}+\mathrm{r}} \mathrm{dx}$
Substitute,
$
\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}=\lambda\left(\mathrm{px}^2+\mathrm{qx}+\mathrm{r}\right)+\mu\left\{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{px}^2+\mathrm{qx}+\mathrm{r}\right)\right\}+\gamma
$
Find λ, μ, and γ. These integrations reduce to integration of three independent functions.
Integration of the form $\int \frac{\mathrm{k}(\mathrm{x})}{\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}} \mathrm{dx}$
(here, k(x) is a polynomial of degree greater than 2)
To solve this type of integration, divide the numerator by the denominator and express the integral as
$\mathrm{Q}(\mathrm{x})+\frac{\mathrm{R}(\mathrm{x})}{\mathrm{ax}+\mathrm{bx}+\mathrm{c}}$
Here, R(x) is a linear function of x.
"Stay in the loop. Receive exam news, study resources, and expert advice!"