JEE Main News Updates by NTA - New Changes, No. Of Attempts, Age Limit

Integrals of Particular Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Some Special Integration, Application of Special Integral Formula (Part 1) is considered one of the most asked concept.

  • 46 Questions around this concept.

Solve by difficulty

$\int \frac{2^{\mathrm{x}}}{\sqrt{1-4^{\mathrm{x}}}} \mathrm{dx}$ equals

$\int \frac{x+\sin x}{1+\cos x} d x$ is equal to

$\int \mathrm{c}^2\left(\frac{1-x}{1+x^2}\right)^2 d x_{\text {is equal to }}$

 

Concepts Covered - 3

Some Special Integration

$\begin{aligned} & \text { 1. } \int \frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{a}^2}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C} \\ & \text { put } \mathrm{x}=\mathrm{a} \tan \theta, \text { then } \mathrm{dx}=\mathrm{asec}^2 \theta \mathrm{~d} \theta \\ & \begin{aligned} \therefore \int \frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{a}^2} & =\int \frac{\mathrm{asec}^2 \theta}{\mathrm{a}^2+\mathrm{a}^2 \tan ^2 \theta} \mathrm{~d} \theta \\ & =\int \frac{\mathrm{asec}^2 \theta}{\mathrm{a}^2\left(1+\tan ^2 \theta\right)} \mathrm{d} \theta \\ & =\frac{1}{\mathrm{a}} \int \mathrm{d} \theta=\frac{1}{\mathrm{a}} \theta+\mathrm{C}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}\end{aligned}\end{aligned}$

2. $\int \frac{\mathrm{dx}}{\mathrm{x}^2-\mathrm{a}^2}=\frac{1}{2 \mathrm{a}} \log \left|\frac{\mathrm{x}-\mathrm{a}}{\mathrm{x}+\mathrm{a}}\right|+\mathrm{C}$
we can rewrite the above integral as
$
\begin{aligned}
\int \frac{d x}{x^2-a^2} & =\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right) d x \\
& =\frac{1}{2 a}(\log |x-a|-\log |x+a|)+c \\
& =\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C
\end{aligned}
$

3. $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
4. $\int \frac{d x}{\sqrt{\mathrm{a}^2-\mathrm{x}^2}}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
5. $\int \frac{d x}{\sqrt{a^2+x^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+C$
6. $\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^2-\mathrm{a}^2}}=\log \left|\mathrm{x}+\sqrt{\mathrm{x}^2-\mathrm{a}^2}\right|+\mathrm{C}$
7. $\int \sqrt{\mathrm{a}^2-\mathrm{x}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{a}^2-\mathrm{x}^2}+\frac{1}{2} \mathrm{a}^2 \sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
8. $\int \sqrt{\mathrm{a}^2+\mathrm{x}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{a}^2+\mathrm{x}^2}+\frac{1}{2} \mathrm{a}^2 \log \left|\mathrm{x}+\sqrt{\mathrm{a}^2+\mathrm{x}^2}\right|+C$
9. $\int \sqrt{\mathrm{x}^2-\mathrm{a}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{x}^2-\mathrm{a}^2}-\frac{1}{2} \mathrm{a}^2 \log \left|\mathrm{x}+\sqrt{\mathrm{x}^2-\mathrm{a}^2}\right|+C$

Following are some important substitutions useful in evaluating integrals.

\begin{array}{c||c|}
\text { Expression } & \text { Substitution } \\
\hline a^2+x^2 & x=a \tan \theta \text { or } x=a \cot \theta \\
\hline a^2-x^2 & x=a \sin \theta \text { or } x=a \cos \theta \\
\hline x^2-a^2 & x=a \sec \theta \text { or } x=a \csc \theta \\
\hline \sqrt{\frac{a-x}{a+x}} \text { or } \sqrt{\frac{a+x}{a-x}} & x=a \cos 2 \theta \\
\hline
\end{array}

Application of Special Integral Formula (Part 1)

Integration of the type 

(i) $\int \frac{(p x+q) d x}{a x^2+b x+c}$
(ii) $\int \frac{(p x+q)}{\sqrt{a x^2+b x+c}} d x$
(iii) $\int(p x+q) \sqrt{a x^2+b x+c} d x$

Express the linear factor $p x+q$ in terms of the derivative of quadratic factor $a x^2+b x+c$
i.e.
$
\begin{aligned}
\mathrm{px}+\mathrm{q} & =\lambda \cdot \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}\right)+\mu \\
\Rightarrow \quad \mathrm{px}+\mathrm{q} & =\lambda(2 \mathrm{ax}+\mathrm{b})+\mu
\end{aligned}
$

Find $\lambda$ and $\mu$ and replace $(p x+q)$ by $\lambda(2 a x+b)+\mu$

 

Application of Special Integral Formula (Part 2)

Integration of the type

1. $\int \frac{a x^2+b x+c}{\left(p x^2+q x+r\right)} d x$
2. $\int \frac{\left(a x^2+b x+c\right)}{\sqrt{\mathrm{px}^2+\mathrm{qx}+\mathrm{r}}} \mathrm{dx}$
3. $\int\left(\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}\right) \sqrt{\mathrm{px}^2+\mathrm{qx}+\mathrm{r}} \mathrm{dx}$

Substitute,
$
\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}=\lambda\left(\mathrm{px}^2+\mathrm{qx}+\mathrm{r}\right)+\mu\left\{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{px}^2+\mathrm{qx}+\mathrm{r}\right)\right\}+\gamma
$

Find λ, μ, and γ. These integrations reduce to integration of three independent functions.

Integration of the form $\int \frac{\mathrm{k}(\mathrm{x})}{\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}} \mathrm{dx}$

(here, k(x) is a polynomial of degree greater than 2)

To solve this type of integration, divide the numerator by the denominator and express the integral as 

$\mathrm{Q}(\mathrm{x})+\frac{\mathrm{R}(\mathrm{x})}{\mathrm{ax}+\mathrm{bx}+\mathrm{c}}$ 

Here, R(x) is a linear function of x.

Study it with Videos

Some Special Integration
Application of Special Integral Formula (Part 1)
Application of Special Integral Formula (Part 2)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Some Special Integration

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.14

Line : 1

Application of Special Integral Formula (Part 1)

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 7.19

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top