JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Newton-Leibnitz's Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Newton-Leibniz's Formula is considered one of the most asked concept.

  • 48 Questions around this concept.

Solve by difficulty

If $m$ and $n$ respectively are the number of local maximum and local minimum points of the function $f(x)=\int_0^{x^2} \frac{t^2-5 t+4}{2+e^t} d t$, then the ordered pair $(m, n)$ is

Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x), x-a x i s$ and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is $\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$.Then $f\left(\frac{\pi}{2}\right)$ is

\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \cos t^2 d t}{x \sin x}=\ldots \ldots

 

If F(x)=\frac{1}{x^2} \int_4^x\left\{4 t^2-2 F^{\prime}(t)\right\} d t, then F^{\prime}(4)  equals:

 

\mathrm{ \lim _{x \rightarrow 0}\left(\frac{1}{x^5} \int_0^x c^{-t^2} d t-\frac{1}{x^4}+\frac{1}{3 x^2}\right)}

If the function f:[0,8] \rightarrow R  is differentiable then for 0<\alpha, \beta<2, \int_0^8 f(t) d t

is equal to

$\lim _{x \rightarrow \frac{x}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$ is equal to :

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

A function f, continuous on the positive real axis has the property that $\int_1^{\mathrm{xy}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{y} \int_1^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}+\mathrm{x} \int_1^{\mathrm{y}} \mathrm{f}(\mathrm{t}) \mathrm{dt}, \forall \mathrm{x}>0, \mathrm{y}>0$. If $\mathrm{f}(1)=3$, then $\mathrm{f}^{\prime}(3)$ equals

$\lim_{x=0} \frac{\int_{0}^{x^{2}}{(\tan^{-1}t)^{2} dt }}{\int_{0}^{x^{4}}{(\sin\sqrt{t} dt})}$ is equal to

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

Concepts Covered - 1

Newton-Leibniz's Formula

If the functions u(x) and v(x) are defined and f(t) is a continuous function, then

$\frac{d}{d x}\left[\int_{\mathbf{u}(\mathbf{x})}^{\mathbf{v}(\mathbf{x})} \mathbf{f}(\mathbf{t}) \mathrm{dt}\right]=\mathbf{f}(\mathbf{v}(\mathbf{x})) \cdot \frac{\mathrm{d}}{\mathrm{dx}}\{\mathbf{v}(\mathbf{x})\}-\mathbf{f}(\mathbf{u}(\mathbf{x})) \cdot \frac{d}{d x}\{\mathbf{u}(\mathbf{x})\}$

Proof:

$\begin{array}{ll}\text { Let } & \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})\}=\mathrm{f}(\mathrm{x}) \\ \Rightarrow & \int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{F}(\mathrm{v}(\mathrm{x}))-\mathrm{F}(\mathrm{u}(\mathrm{x})) \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{v}(\mathrm{x}))-\mathrm{F}(\mathrm{u}(\mathrm{x}))) \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\mathrm{F}^{\prime}(\mathrm{v}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{v}(\mathrm{x})\}-\mathrm{F}^{\prime}(\mathrm{u}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{u}(\mathrm{x})\} \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\mathrm{f}(\mathrm{v}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{v}(\mathrm{x})\}-\mathrm{f}(\mathrm{u}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{u}(\mathrm{x})\}\end{array}$

Study it with Videos

Newton-Leibniz's Formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Newton-Leibniz's Formula

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 8.27

Line : 27

E-books & Sample Papers

Get Answer to all your questions

Back to top