UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Newton-Leibniz's Formula is considered one of the most asked concept.
45 Questions around this concept.
If , then equals:
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
If the function is differentiable then for
is equal to
If the functions u(x) and v(x) are defined and f(t) is a continuous function, then
$\frac{d}{d x}\left[\int_{\mathbf{u}(\mathbf{x})}^{\mathbf{v}(\mathbf{x})} \mathbf{f}(\mathbf{t}) \mathrm{dt}\right]=\mathbf{f}(\mathbf{v}(\mathbf{x})) \cdot \frac{\mathrm{d}}{\mathrm{dx}}\{\mathbf{v}(\mathbf{x})\}-\mathbf{f}(\mathbf{u}(\mathbf{x})) \cdot \frac{d}{d x}\{\mathbf{u}(\mathbf{x})\}$
Proof:
$\begin{array}{ll}\text { Let } & \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{F}(\mathrm{x})\}=\mathrm{f}(\mathrm{x}) \\ \Rightarrow & \int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{F}(\mathrm{v}(\mathrm{x}))-\mathrm{F}(\mathrm{u}(\mathrm{x})) \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{v}(\mathrm{x}))-\mathrm{F}(\mathrm{u}(\mathrm{x}))) \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\mathrm{F}^{\prime}(\mathrm{v}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{v}(\mathrm{x})\}-\mathrm{F}^{\prime}(\mathrm{u}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{u}(\mathrm{x})\} \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{\mathrm{u}(\mathrm{x})}^{\mathrm{v}(\mathrm{x})} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=\mathrm{f}(\mathrm{v}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{v}(\mathrm{x})\}-\mathrm{f}(\mathrm{u}(\mathrm{x})) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{u}(\mathrm{x})\}\end{array}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"