JEE Main Eligibility Criteria 2025- Marks in Class 12th, Age Limit

# Evaluation of Definite Integrals by Substitution - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

## Quick Facts

• 19 Questions around this concept.

## Solve by difficulty

The solution for $\dpi{100} x$ of the equation  $\dpi{100} \int_{\sqrt{2}}^{x}\; \frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2}$     is

## Concepts Covered - 1

Evaluation of Definite Integrals by Substitution

We have already learnt to find Indefinite Integration by using substitution method. But in the case of definite integration, we also need to change the limits of integration 'a' and 'b'. If we substitute x = g(t), then g(t)  must be continuous in the interval [a, b].

Let's see some solved examples to see how such questions are solved.

Example 1

$\text{Compute the integral } \;\int_{0}^{\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$

$\\\text { Let } \quad I=\int_{x=0}^{x=\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}\\\text{Divide numerator and denominator by }\cos^2x\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;}=\int_{x=0}^{x=\pi / 2} \frac{\sec ^{2} x d x}{a^{2}+b^{2} \tan ^{2} x}\\\text { Put } \quad \text { tan } x=t \Rightarrow \sec ^{2} x d x=d t\\\therefore\;\;\;\; \quad I=\int_{t=0}^{t=\infty} \frac{d t}{a^{2}+b^{2} t^{2}}\\\begin{array}{l}{\text { We find the new limits of integration } t=\tan x \Rightarrow t=0} \\ {\text { when } x=0 \text { and } t=\infty \text { when } x=\pi / 2}\end{array}\\\mathrm{\Rightarrow\;\;\;\;} \quad I=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{d t}{\left(\frac{a}{b}\right)^{2}+t^{2}}=\frac{1}{b^{2}} \cdot \frac{1}{a / b}\left[\tan ^{-1} \frac{b t}{a}\right]_{0}^{\infty}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;}=\frac{1}{a b}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{2 a b}$

## Study it with Videos

Evaluation of Definite Integrals by Substitution

"Stay in the loop. Receive exam news, study resources, and expert advice!"