JEE Main 2025 Cutoff for CSE - Qualifying Marks for NIT, IIIT, GFTI

Evaluation of Definite Integrals by Substitution - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 19 Questions around this concept.

Solve by difficulty

The solution for x of the equation  \int_{\sqrt{2}}^{x}\; \frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2}     is

Concepts Covered - 1

Evaluation of Definite Integrals by Substitution

We have already learned to find Indefinite Integration by using the substitution method. But in the case of definite integration, we also need to change the limits of integration 'a' and 'b'. If we substitute x = g(t), then g(t)  must be continuous in the interval [a, b].

Let's look at some examples of how such questions are solved.

Example 1

Compute the integral $\int_0^{\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Let $\quad I=\int_{x=0}^{x=\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Divide numerator and denominator by $\cos ^2 x$
$
=\int_{x=0}^{x=\pi / 2} \frac{\sec ^2 x d x}{a^2+b^2 \tan ^2 x}
$

Put $\quad \tan x=t \Rightarrow \sec ^2 x d x=d t$
$
\therefore \quad I=\int_{t=0}^{t=\infty} \frac{d t}{a^2+b^2 t^2}
$

We find the new limits of integration $t=\tan x \Rightarrow t=0$ when $x=0$ and $t=\infty$ when $x=\pi / 2$
$
\begin{aligned}
\Rightarrow \quad I & =\frac{1}{b^2} \int_0^{\infty} \frac{d t}{\left(\frac{a}{b}\right)^2+t^2}=\frac{1}{b^2} \cdot \frac{1}{a / b}\left[\tan ^{-1} \frac{b t}{a}\right]_0^{\infty} \\
& =\frac{1}{a b}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{2 a b}
\end{aligned}
$

 

 

Study it with Videos

Evaluation of Definite Integrals by Substitution

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top