Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
29 Questions around this concept.
The solution for of the equation
is
The value of $\int_0^1 x^{-1 / 2}(1-x)^{-1 / 2} d x$ is equal to
$\lim_{n\rightarrow \infty}\left [ \frac{1}{n} + \frac{n^{2}}{(n+1)^{3}}+ \frac{n^{2}}{(n+2)^{3}} +...+\frac{1}{8n}\right ]=$
JEE Main 2025: Session 2 Result Out; Direct Link
JEE Main 2025: College Predictor | Marks vs Percentile vs Rank
New: JEE Seat Matrix- IITs, NITs, IIITs and GFTI | NITs Cutoff
Latest: Meet B.Tech expert in your city to shortlist colleges
The value of the integral
$\int_{1}^{3}\left ( \left ( x-2 \right )^{4}\sin^{3}\left (x -2 \right )+\left ( x+2 \right )^{2019}+1 \right )dx$
is
We have already learned to find Indefinite Integration by using the substitution method. But in the case of definite integration, we also need to change the limits of integration 'a' and 'b'. If we substitute x = g(t), then g(t) must be continuous in the interval [a, b].
Let's look at some examples of how such questions are solved.
Example 1
Compute the integral $\int_0^{\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Let $\quad I=\int_{x=0}^{x=\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Divide numerator and denominator by $\cos ^2 x$
$
=\int_{x=0}^{x=\pi / 2} \frac{\sec ^2 x d x}{a^2+b^2 \tan ^2 x}
$
Put $\quad \tan x=t \Rightarrow \sec ^2 x d x=d t$
$
\therefore \quad I=\int_{t=0}^{t=\infty} \frac{d t}{a^2+b^2 t^2}
$
We find the new limits of integration $t=\tan x \Rightarrow t=0$ when $x=0$ and $t=\infty$ when $x=\pi / 2$
$
\begin{aligned}
\Rightarrow \quad I & =\frac{1}{b^2} \int_0^{\infty} \frac{d t}{\left(\frac{a}{b}\right)^2+t^2}=\frac{1}{b^2} \cdot \frac{1}{a / b}\left[\tan ^{-1} \frac{b t}{a}\right]_0^{\infty} \\
& =\frac{1}{a b}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{2 a b}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"