Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
22 Questions around this concept.
The solution for of the equation
is
The value of $\int_0^1 x^{-1 / 2}(1-x)^{-1 / 2} d x$ is equal to
$\lim_{n\rightarrow \infty}\left [ \frac{1}{n} + \frac{n^{2}}{(n+1)^{3}}+ \frac{n^{2}}{(n+2)^{3}} +...+\frac{1}{8n}\right ]=$
New: JEE Main 2025 Session 1 Result OUT; Check Now | Rank Predictor
JEE Main 2025: College Predictor | Marks vs Rank vs Percentile | Top NITs Cutoff
JEE Main 2025: January Session Official Question Paper for All Shifts | Exam Analysis
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
We have already learned to find Indefinite Integration by using the substitution method. But in the case of definite integration, we also need to change the limits of integration 'a' and 'b'. If we substitute x = g(t), then g(t) must be continuous in the interval [a, b].
Let's look at some examples of how such questions are solved.
Example 1
Compute the integral $\int_0^{\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Let $\quad I=\int_{x=0}^{x=\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Divide numerator and denominator by $\cos ^2 x$
$
=\int_{x=0}^{x=\pi / 2} \frac{\sec ^2 x d x}{a^2+b^2 \tan ^2 x}
$
Put $\quad \tan x=t \Rightarrow \sec ^2 x d x=d t$
$
\therefore \quad I=\int_{t=0}^{t=\infty} \frac{d t}{a^2+b^2 t^2}
$
We find the new limits of integration $t=\tan x \Rightarrow t=0$ when $x=0$ and $t=\infty$ when $x=\pi / 2$
$
\begin{aligned}
\Rightarrow \quad I & =\frac{1}{b^2} \int_0^{\infty} \frac{d t}{\left(\frac{a}{b}\right)^2+t^2}=\frac{1}{b^2} \cdot \frac{1}{a / b}\left[\tan ^{-1} \frac{b t}{a}\right]_0^{\infty} \\
& =\frac{1}{a b}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{2 a b}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"