VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 7th April | NO Further Extensions!
29 Questions around this concept.
The solution for of the equation
is
The value of $\int_0^1 x^{-1 / 2}(1-x)^{-1 / 2} d x$ is equal to
$\lim_{n\rightarrow \infty}\left [ \frac{1}{n} + \frac{n^{2}}{(n+1)^{3}}+ \frac{n^{2}}{(n+2)^{3}} +...+\frac{1}{8n}\right ]=$
JEE Main Session 2 Questions: April 3: Shift 1 | Shift-2 | April 2: Shift 1 | Shift-2 | Overall Analysis
JEE Main 2025: Mock Tests | PYQs | Rank Predictor | College Predictor | Admit Card Link
New: Meet Careers360 experts in your city | Official Question Papee-Session 1
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
The value of the integral
$\int_{1}^{3}\left ( \left ( x-2 \right )^{4}\sin^{3}\left (x -2 \right )+\left ( x+2 \right )^{2019}+1 \right )dx$
is
We have already learned to find Indefinite Integration by using the substitution method. But in the case of definite integration, we also need to change the limits of integration 'a' and 'b'. If we substitute x = g(t), then g(t) must be continuous in the interval [a, b].
Let's look at some examples of how such questions are solved.
Example 1
Compute the integral $\int_0^{\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Let $\quad I=\int_{x=0}^{x=\pi / 2} \frac{d x}{a^2 \cos ^2 x+b^2 \sin ^2 x}$
Divide numerator and denominator by $\cos ^2 x$
$
=\int_{x=0}^{x=\pi / 2} \frac{\sec ^2 x d x}{a^2+b^2 \tan ^2 x}
$
Put $\quad \tan x=t \Rightarrow \sec ^2 x d x=d t$
$
\therefore \quad I=\int_{t=0}^{t=\infty} \frac{d t}{a^2+b^2 t^2}
$
We find the new limits of integration $t=\tan x \Rightarrow t=0$ when $x=0$ and $t=\infty$ when $x=\pi / 2$
$
\begin{aligned}
\Rightarrow \quad I & =\frac{1}{b^2} \int_0^{\infty} \frac{d t}{\left(\frac{a}{b}\right)^2+t^2}=\frac{1}{b^2} \cdot \frac{1}{a / b}\left[\tan ^{-1} \frac{b t}{a}\right]_0^{\infty} \\
& =\frac{1}{a b}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{2 a b}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"