65 Percentile in JEE Mains 2026: Expected Marks and Rank Analysis

Differentiation Using Logarithm - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 17 Questions around this concept.

Solve by difficulty

If y=x^{x^{x \ldots \ldots}} \text {, then } x\left(1-y \log _e x\right) \frac{d y}{d x} \text { is }

If x=e^{y+e^{y+\ldots \ldots \ldots o s}} \text { then } \frac{d y}{d x} \text { is }:

y=2^{-\log _2\left(x^3-5\right)} \text {, then } \frac{d y}{d x} \text { is }

y=(\sin x+\cos x)^x \text {, then } \frac{d y}{d x} \text { is }:

If y=e^{x+e^{x+\ldots \ldots t o x}} \text {, then } \frac{d y}{d x} \text { is : }

If \mathrm{y}=x^{x^x}, then  \frac{d y}{d x}=

If yx = xy, then \frac{d y}{d x} is:

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

Cambridge Institute of Technology B.Tech Admissions 2025

Highest CTC 53.5 LPA | Average CTC 7.2 LPA | 200+ Companies | 790+ Multiple offers

Concepts Covered - 1

Differentiation Using Logarithm

Differentiation Using Logarithm

1. Till now we have studied how to find derivatives of functions of the form $y=(g(x))^n$ (where $n$ is constant), as well as functions of the form $y=b^{g(x)}, b>0$ and $b \neq 1$ (where $b$ is a constant). But how to find the derivatives of functions of the form $y=[f(x)]^{g(x)}$ such as $y=x^x$ or $y=(\tan x)^{\sin (x)}$. These functions require a technique called logarithmic differentiation, which allows us to differentiate any function of the form $h(x)=[f(x)]^{g(x)}$

Let, $\quad \mathrm{y}=(\mathrm{f}(\mathrm{x}))^{\mathrm{g}(\mathrm{x})}$
Take $\log$ both side

$
\log y=g(x) \log f(x)
$
Differentiate concerning x

$
\begin{array}{rlrl}
\frac{1}{y} \cdot \frac{d y}{d x} & =g(x) \cdot \frac{1}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x)) \\
& \therefore \quad \frac{d y}{d x} & =y\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right] \\
& \text { or } \quad \frac{d y}{d x} & =(f(x))^{g(x)}\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right]
\end{array}
$

Note:

Shortcut to differentiate such functions

$\frac{d y}{d x}=$ Differential of $y$ treating $f(x)$ as constant + Differential of y treating $\mathrm{g}(\mathrm{x})$ as constant.
2. We can use logarithmic differentiation in cases where $y$ is made up of several factors in the numerator and denominator. Logarithm reduces the calculation time and effort in such cases.

Let, $\quad \mathrm{y}=\frac{\mathrm{f}_1(\mathrm{x}) \cdot \mathrm{f}_2(\mathrm{x}) \cdot \mathrm{f}_3(\mathrm{x}) \ldots}{\mathrm{g}_1(\mathrm{x}) \cdot \mathrm{g}_2(\mathrm{x}) \cdot \mathrm{g}_3(\mathrm{x}) \ldots}$
Take $\log$ both side

$
\begin{aligned}
\log y= & {\left[\log _e\left(f_1(x)\right)+\log _e\left(f_2(x)\right)+\log _e\left(f_3(x)\right)+\ldots\right] } \\
& \quad-\left[\log _e\left(g_1(x)\right)+\log _e\left(g_2(x)\right)+\log _e\left(g_3(x)\right)+\ldots\right]
\end{aligned}
$
Differentiating, w.r.t. $x$, we get

$
\begin{aligned}
\frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{\left(\mathrm{f}_1(\mathrm{x})\right)^{\prime}}{\mathrm{f}_1(\mathrm{x})}+\frac{\left(\mathrm{f}_2(\mathrm{x})\right)^{\prime}}{\mathrm{f}_2(\mathrm{x})}+\frac{\left(\mathrm{f}_3(\mathrm{x})\right)^{\prime}}{\mathrm{f}_3(\mathrm{x})}+\ldots\right] \\
-\left[\frac{\left(\mathrm{g}_1(\mathrm{x})\right)^{\prime}}{\mathrm{g}_1(\mathrm{x})}+\frac{\left(\mathrm{g}_2(\mathrm{x})\right)^{\prime}}{\mathrm{g}_2(\mathrm{x})}+\frac{\left(\mathrm{g}_3(\mathrm{x})\right)^{\prime}}{\mathrm{g}_3(\mathrm{x})}+\ldots\right]
\end{aligned}
$

Study it with Videos

Differentiation Using Logarithm

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions