Download Careers360 App
JEE Main 2026 Study Material for Physics, Chemistry & Maths

Differentiation Using Logarithm - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 17 Questions around this concept.

Solve by difficulty

If y=x^{x^{x \ldots \ldots}} \text {, then } x\left(1-y \log _e x\right) \frac{d y}{d x} \text { is }

If x=e^{y+e^{y+\ldots \ldots \ldots o s}} \text { then } \frac{d y}{d x} \text { is }:

y=2^{-\log _2\left(x^3-5\right)} \text {, then } \frac{d y}{d x} \text { is }

y=(\sin x+\cos x)^x \text {, then } \frac{d y}{d x} \text { is }:

If y=e^{x+e^{x+\ldots \ldots t o x}} \text {, then } \frac{d y}{d x} \text { is : }

If \mathrm{y}=x^{x^x}, then  \frac{d y}{d x}=

If yx = xy, then \frac{d y}{d x} is:

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 30th July | Limited seats available in select program

Concepts Covered - 1

Differentiation Using Logarithm

Differentiation Using Logarithm

1. Till now we have studied how to find derivatives of functions of the form $y=(g(x))^n$ (where $n$ is constant), as well as functions of the form $y=b^{g(x)}, b>0$ and $b \neq 1$ (where $b$ is a constant). But how to find the derivatives of functions of the form $y=[f(x)]^{g(x)}$ such as $y=x^x$ or $y=(\tan x)^{\sin (x)}$. These functions require a technique called logarithmic differentiation, which allows us to differentiate any function of the form $h(x)=[f(x)]^{g(x)}$

Let, $\quad \mathrm{y}=(\mathrm{f}(\mathrm{x}))^{\mathrm{g}(\mathrm{x})}$
Take $\log$ both side

$
\log y=g(x) \log f(x)
$
Differentiate concerning x

$
\begin{array}{rlrl}
\frac{1}{y} \cdot \frac{d y}{d x} & =g(x) \cdot \frac{1}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x)) \\
& \therefore \quad \frac{d y}{d x} & =y\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right] \\
& \text { or } \quad \frac{d y}{d x} & =(f(x))^{g(x)}\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right]
\end{array}
$

Note:

Shortcut to differentiate such functions

$\frac{d y}{d x}=$ Differential of $y$ treating $f(x)$ as constant + Differential of y treating $\mathrm{g}(\mathrm{x})$ as constant.
2. We can use logarithmic differentiation in cases where $y$ is made up of several factors in the numerator and denominator. Logarithm reduces the calculation time and effort in such cases.

Let, $\quad \mathrm{y}=\frac{\mathrm{f}_1(\mathrm{x}) \cdot \mathrm{f}_2(\mathrm{x}) \cdot \mathrm{f}_3(\mathrm{x}) \ldots}{\mathrm{g}_1(\mathrm{x}) \cdot \mathrm{g}_2(\mathrm{x}) \cdot \mathrm{g}_3(\mathrm{x}) \ldots}$
Take $\log$ both side

$
\begin{aligned}
\log y= & {\left[\log _e\left(f_1(x)\right)+\log _e\left(f_2(x)\right)+\log _e\left(f_3(x)\right)+\ldots\right] } \\
& \quad-\left[\log _e\left(g_1(x)\right)+\log _e\left(g_2(x)\right)+\log _e\left(g_3(x)\right)+\ldots\right]
\end{aligned}
$
Differentiating, w.r.t. $x$, we get

$
\begin{aligned}
\frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{\left(\mathrm{f}_1(\mathrm{x})\right)^{\prime}}{\mathrm{f}_1(\mathrm{x})}+\frac{\left(\mathrm{f}_2(\mathrm{x})\right)^{\prime}}{\mathrm{f}_2(\mathrm{x})}+\frac{\left(\mathrm{f}_3(\mathrm{x})\right)^{\prime}}{\mathrm{f}_3(\mathrm{x})}+\ldots\right] \\
-\left[\frac{\left(\mathrm{g}_1(\mathrm{x})\right)^{\prime}}{\mathrm{g}_1(\mathrm{x})}+\frac{\left(\mathrm{g}_2(\mathrm{x})\right)^{\prime}}{\mathrm{g}_2(\mathrm{x})}+\frac{\left(\mathrm{g}_3(\mathrm{x})\right)^{\prime}}{\mathrm{g}_3(\mathrm{x})}+\ldots\right]
\end{aligned}
$

Study it with Videos

Differentiation Using Logarithm

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Differentiation Using Logarithm

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 3.14

Line : 30

E-books & Sample Papers

Get Answer to all your questions

Back to top