How to Improve Your Performance in JEE Main 2025 April Attempt?

Differentiation Using Logarithm - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 17 Questions around this concept.

Solve by difficulty

If y=x^{x^{x \ldots \ldots}} \text {, then } x\left(1-y \log _e x\right) \frac{d y}{d x} \text { is }

If x=e^{y+e^{y+\ldots \ldots \ldots o s}} \text { then } \frac{d y}{d x} \text { is }:

y=2^{-\log _2\left(x^3-5\right)} \text {, then } \frac{d y}{d x} \text { is }

y=(\sin x+\cos x)^x \text {, then } \frac{d y}{d x} \text { is }:

If y=e^{x+e^{x+\ldots \ldots t o x}} \text {, then } \frac{d y}{d x} \text { is : }

If \mathrm{y}=x^{x^x}, then  \frac{d y}{d x}=

If yx = xy, then \frac{d y}{d x} is:

Geeta University B.Tech Admissions 2025

70+ Programs | 40 LPA-Highest Package Offered | Up to 100% Scholarship worth 24 Crore

Parul University B.Tech Admissions 2025

Registrations Deadline- 05th July | India's youngest NAAC A++ accredited University | NIRF rank band 151-200 | 2200 Recruiters | 45.98 Lakhs Highest Package

Concepts Covered - 1

Differentiation Using Logarithm

Differentiation Using Logarithm

1. Till now we have studied how to find derivatives of functions of the form $y=(g(x))^n$ (where $n$ is constant), as well as functions of the form $y=b^{g(x)}, b>0$ and $b \neq 1$ (where $b$ is a constant). But how to find the derivatives of functions of the form $y=[f(x)]^{g(x)}$ such as $y=x^x$ or $y=(\tan x)^{\sin (x)}$. These functions require a technique called logarithmic differentiation, which allows us to differentiate any function of the form $h(x)=[f(x)]^{g(x)}$

Let, $\quad \mathrm{y}=(\mathrm{f}(\mathrm{x}))^{\mathrm{g}(\mathrm{x})}$
Take $\log$ both side

$
\log y=g(x) \log f(x)
$
Differentiate concerning x

$
\begin{array}{rlrl}
\frac{1}{y} \cdot \frac{d y}{d x} & =g(x) \cdot \frac{1}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x)) \\
& \therefore \quad \frac{d y}{d x} & =y\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right] \\
& \text { or } \quad \frac{d y}{d x} & =(f(x))^{g(x)}\left[\frac{g(x)}{f(x)} \cdot \frac{d}{d x}(f(x))+\log f(x) \cdot \frac{d}{d x}(g(x))\right]
\end{array}
$

Note:

Shortcut to differentiate such functions

$\frac{d y}{d x}=$ Differential of $y$ treating $f(x)$ as constant + Differential of y treating $\mathrm{g}(\mathrm{x})$ as constant.
2. We can use logarithmic differentiation in cases where $y$ is made up of several factors in the numerator and denominator. Logarithm reduces the calculation time and effort in such cases.

Let, $\quad \mathrm{y}=\frac{\mathrm{f}_1(\mathrm{x}) \cdot \mathrm{f}_2(\mathrm{x}) \cdot \mathrm{f}_3(\mathrm{x}) \ldots}{\mathrm{g}_1(\mathrm{x}) \cdot \mathrm{g}_2(\mathrm{x}) \cdot \mathrm{g}_3(\mathrm{x}) \ldots}$
Take $\log$ both side

$
\begin{aligned}
\log y= & {\left[\log _e\left(f_1(x)\right)+\log _e\left(f_2(x)\right)+\log _e\left(f_3(x)\right)+\ldots\right] } \\
& \quad-\left[\log _e\left(g_1(x)\right)+\log _e\left(g_2(x)\right)+\log _e\left(g_3(x)\right)+\ldots\right]
\end{aligned}
$
Differentiating, w.r.t. $x$, we get

$
\begin{aligned}
\frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{\left(\mathrm{f}_1(\mathrm{x})\right)^{\prime}}{\mathrm{f}_1(\mathrm{x})}+\frac{\left(\mathrm{f}_2(\mathrm{x})\right)^{\prime}}{\mathrm{f}_2(\mathrm{x})}+\frac{\left(\mathrm{f}_3(\mathrm{x})\right)^{\prime}}{\mathrm{f}_3(\mathrm{x})}+\ldots\right] \\
-\left[\frac{\left(\mathrm{g}_1(\mathrm{x})\right)^{\prime}}{\mathrm{g}_1(\mathrm{x})}+\frac{\left(\mathrm{g}_2(\mathrm{x})\right)^{\prime}}{\mathrm{g}_2(\mathrm{x})}+\frac{\left(\mathrm{g}_3(\mathrm{x})\right)^{\prime}}{\mathrm{g}_3(\mathrm{x})}+\ldots\right]
\end{aligned}
$

Study it with Videos

Differentiation Using Logarithm

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Differentiation Using Logarithm

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 3.14

Line : 30

E-books & Sample Papers

Get Answer to all your questions

Back to top