UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Rules of Differentiation (Chain Rule) is considered one of the most asked concept.
46 Questions around this concept.
Suppose $f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}$. Then the value of $f^{\prime}(0)$ is equal to
Let $y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1<x<1$. Then at $x=\frac{1}{2}$, the value of $225\left(y^{\prime}-y^{\prime \prime}\right)$ is equal to
If then
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
Let $\mathrm{f}: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ for all $x, y, f(y) \neq 0$. If $f^{\prime}(1)=2024$, then
Rules of Differentiation (Sum/Difference/Product)
Let f(x) and g(x) be differentiable functions and k as constant. Then each of the following rules holds:
Sum Rule
The derivative of the sum of a function f and a function g is the same as the sum of the derivative of f and the derivative of g.
\begin{aligned}
&\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))\\
&\text { In general, }\\
&\frac{d}{d x}(f(x)+g(x)+h(x)+\ldots \ldots)=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))+\frac{d}{d x}(h(x))+\ldots \ldots
\end{aligned}
Difference Rule
The derivative of the difference of a function f and a function g is the same as the difference of the derivative of f and the derivative of g.
\begin{aligned}
& \frac{d}{d x}(f(x)-g(x))=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x)) \\
& \frac{d}{d x}(f(x)-g(x)-h(x)-\ldots \ldots)=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))-\frac{d}{d x}(h(x))-\ldots \ldots
\end{aligned}
Constant Multiple Rule
The derivative of a constant k multiplied by a function f is the same as the constant multiplied by the derivative of f
$
\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))
$
Product rule
Let $f(x)$ and $g(x)$ be differentiable functions. Then,
$
\frac{d}{d x}(f(x) g(x))=g(x) \cdot \frac{d}{d x}(f(x))+f(x) \cdot \frac{d}{d x}(g(x))
$
This means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.
Extending the Product Rule
If 3 functions are involved, i.e let $k(x)=f(x) \cdot g(x) \cdot h(x)$
Let us have a function $k(x)$ as the product of the function $f(x) g(x)$ and the function $h(x)$. That is, $k(x)=$ $(f(x) \cdot g(x)) \cdot h(x)$. Thus,
$
k^{\prime}(x)=\frac{d}{d x}(f(x) g(x)) \cdot h(x)+\frac{d}{d x}(h(x)) \cdot(f(x) g(x))
$
[By applying the product rule to the product of $f(x) g(x)$ and $h(x)$.]
$
\begin{aligned}
& =\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right) h(x)+h^{\prime}(x) f(x) g(x) \\
& =f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)
\end{aligned}
$
Rules of Differentiation (Division or Quotient Rule)
Quotient Rule
Let $f(x)$ and $g(x)$ be differentiable functions. Then
$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot \frac{d}{d x}(f(x))-f(x) \cdot \frac{d}{d x}(g(x))}{(g(x))^2}
$
OR
if $h(x)=\frac{f(x)}{g(x)}$, then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^2}$
As we see in the following theorem, the derivative of the quotient is not the quotient of the derivatives.
If $u(x)$ and $v(x)$ are differentiable functions, then $u o v(x)$ or $u[v(x)]$ is also differentiable.
If $y=\operatorname{uov}(x)=u[v(x)]$, then
$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u\{v(x)\}}{\mathrm{d}\{v(x)\}} \times \frac{\mathrm{d}}{\mathrm{~d} x} v(x)
$
Is known as the chain rule. Or,
If $y=f(u)$ and $u=g(x)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}$
The chain rule can be extended as follows:
If $y=[\operatorname{uovow}(x)]=u[v\{w(x)\}]$, then
$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}[u[v\{w(x)\}]}{\mathrm{d} v\{w(x)\}} \times \frac{\mathrm{d}[v\{w(x)\}]}{\mathrm{d} w(x)} \times \frac{\mathrm{d}[w(x)]}{\mathrm{d} x}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"