VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Differentiation of Function in Parametric Form is considered one of the most asked concept.
31 Questions around this concept.
equals to
For $a>0,{ }^{t \epsilon}\left[0, \frac{\pi}{2}\right]$, let $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$. Then, $1+\left[\frac{d y}{d x}\right]^2$ equals to :
$
\text { If } 3 f(x)+5 f\left(\frac{1}{x}\right)=\frac{1}{x}-3, V x(\neq 0) \varepsilon R \quad \text { then } f(x)
$
is equal to:
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Differentiation of Function in Parametric Form
Sometimes, $x$ and $y$ are given as functions of a single variable, i.e., $x=g(t)$ and $y=f(t)$ are two functions and $t$ is a variable. In such cases $x$ and $y$ are called parametric functions or parametric equations and $t$ is called the parameter.
To find $\frac{d y}{d x}$ in such cases, first find the relationship between x and y by eliminating the parameter t and then differentiate concerning $t$.
But sometimes it is not possible to eliminate $t$, then in that case use.
$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{f^{\prime}(t)}{g^{\prime}(t)}
$
For example
If $x=a(1-\cos \theta)$ and $y=a(\theta-\sin \theta)$, then $d y / d x$ is
Solution.
$
\begin{aligned}
& \text { Given } \mathrm{x}=\mathrm{a}(1-\cos \theta) \text { and } \mathrm{y}=\mathrm{a}(\theta+\sin \theta) \\
& \Rightarrow \frac{d x}{d \theta}=a(\sin \theta) \text { and } \frac{d y}{d \theta}=a(1+\cos \theta) \\
& \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{1+\cos \theta}{\sin \theta}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"