JEE Main Exam Hall Instructions 2025 - Check Must Know Points

Derivative of Polynomials and Trigonometric Functions - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Derivative of the Trigonometric Function (csc/sec/cot) is considered one of the most asked concept.

  • 174 Questions around this concept.

Solve by difficulty

$\frac{d}{dx}(2x^2-3x) = ?$

Find $f^{\prime}(7)$ for $f(x)=x^2-13 x+1$

If $f(x)= \left | (x-4)(x-5) \right |,\: \: then \: \: {f}'(x) =?$

The distance moved by the particle in time t is given by x=$t^{3}-12\: t^{2}+6t+8$. At the instant when its acceleration is Zero, the velocity is

If $f(x)=1-x+x^2-x^3 \ldots-x^{99}+x^{100}$, then $\mathrm{f}^{\prime}(1)$ is equal to

$f(x)=\frac{x^n-a^n}{x-a}$ for some constant ‘a’, then f’(a) is
 

If $f(x)=1+x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots+\frac{x^{100}}{100}$ then $\mathrm{f}^{\prime}(1)$ is equal to

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Let $f(x)=a x^3+b x^2+e x+41$ be such that $f(1)=40, f^{\prime}(1)=2$ and $f^{\prime}(1)=4$.
Then $a^2+b^2+c^2$ is equal to :

If x is real, the minimum value of $x^2 - 8x + 17$ is

JEE Main 2025 - 10 Full Mock Test
Aspirants who are preparing for JEE Main can download JEE Main 2025 mock test pdf which includes 10 full mock test, high scoring chapters and topics according to latest pattern and syllabus.
Download EBook

The maximum value of slope of the curve $y = -x^{ 3 }+ 3x^{2} + 12x - 5$ is

Concepts Covered - 4

Derivative of the Polynomial Function

Derivative of the Polynomial Function

Finding derivatives of functions by using the definition of the derivative (by using the First Principle) can be a lengthy and, for certain functions, a rather challenging process. In this section, we will learn direct results for finding derivatives of certain standard functions that allow us to bypass this process.

$
\begin{aligned}
& \text { 1. } \frac{d}{d x}(\text { constant })=\mathbf{0} \\
& \begin{aligned}
f(x) & =c \text { and } f(x+h)=c \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c-c}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} 0=0
\end{aligned}
\end{aligned}
$
So the derivative of a constant function is zero. Also since a constant function is a horizontal line the slope of a constant function is 0.
2. $\frac{d}{d x}\left(\mathbf{x}^{\mathrm{n}}\right)=\mathbf{n} \mathbf{x}^{\mathrm{n}-1}$

For $f(x)=x^n$ where $n$ is a positive integer, we have

$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^n-x^n}{h}
$
Since,

$
(x+h)^n=x^n+n x^{n-1} h+\binom{n}{2} x^{n-2} h^2+\binom{n}{3} x^{n-3} h^3+\ldots+n x h^{n-1}+h^n
$

We can write

$
(x+h)^n-x^n=n x^{n-1} h+\binom{n}{2} x^{n-2} h^2+\binom{n}{3} x^{n-3} h^3+\ldots+n x h^{n-1}+h^n
$
Next, divide both sides by h:

$
\frac{(x+h)^n-x^n}{h}=\frac{n x^{n-1} h+\binom{n}{2} x^{n-2} h^2+\binom{n}{3} x^{n-3} h^3+\ldots+n x h^{n-1}+h^n}{h}
$
Thus,

$
\frac{(x+h)^n-x^n}{h}=n x^{n-1}+\binom{n}{2} x^{n-2} h+\binom{n}{3} x^{n-3} h^2+\ldots+n x h^{n-2}+h^{n-1}
$
Finally,

$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^n-x^n}{h} \\
& =\lim _{h \rightarrow 0}\left(n x^{n-1}+\binom{n}{2} x^{n-2} h+\binom{n}{3} x^{n-3} h^2+\ldots+n x h^{n-1}+h^n\right) \\
& =n x^{n-1}
\end{aligned}
$

Derivative of the Logarithm and Exponential Function

Derivative of Exponential and Logarithmic Functions

4. $\frac{d}{d x}\left(\mathbf{a}^{\mathbf{x}}\right)=\mathbf{a}^{\mathbf{x}} \log _{\mathrm{e}} \mathbf{a}$
$f(x)=a^x$ and $f(x+h)=a^{x+h}$

$
\begin{array}{rlr}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^x}{h} \\
& =a^x \lim _{h \rightarrow 0} \frac{a^h-1}{h} \\
& =a^x \log _e a & {\left[\because \lim _{x \rightarrow 0} \frac{a^x-1}{x}=\log _e a\right]}
\end{array}
$

5. $\frac{d}{d x}\left(\mathbf{e}^{\mathbf{x}}\right)=\mathbf{e}^{\mathbf{x}} \log _{\mathbf{e}} \mathbf{e}=\mathbf{e}^{\mathbf{x}}$

6. $\frac{d}{d x}\left(\log _{\mathrm{e}}|\mathbf{x}|\right)=\frac{\mathbf{1}}{\mathbf{x}}, \quad \mathbf{x} \neq 0$
$f(x)=\log _e(x)$ and $f(x+h)=\log _e(x+h)$

$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log _e(x+h)-\log _e(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log _e\left(\frac{x+h}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log _e\left(1+\frac{h}{x}\right)}{\frac{h}{x} \cdot x} \\
& =\frac{1}{x} \quad\left[\because \lim _{x \rightarrow 0} \frac{\log _e(1+x)}{x}=1\right]
\end{aligned}
$

7. $\frac{d}{d x}\left(\log _{\mathbf{a}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x} \log _{\mathbf{e}} \mathbf{a}}, \quad \mathbf{x} \neq \mathbf{0}$

Derivative of the Trigonometric Function (cos/sin/tan)

Derivative of the Trigonometric Functions (sin/cos/tan)

8. $\frac{d}{d x}(\sin (\mathbf{x}))=\cos (\mathbf{x})$
$f(x)=\sin (x)$ and $f(x+h)=\sin (x+h)$

$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 \sin \frac{h}{2} \cdot \cos \left(\frac{2 x+h}{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \cdot \lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right) \\
& =\cos x \quad\left[\because \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1\right]
\end{aligned}
$

9. $\frac{d}{d x}(\cos (\mathbf{x}))=-\sin (\mathbf{x})$
10. $\frac{d}{d x}(\tan (\mathbf{x}))=\sec ^2(\mathbf{x})$

Derivative of the Trigonometric Function (csc/sec/cot)

Derivative of the Trigonometric Functions (cot/sec/csc)

11. $\frac{d}{d x}(\cot (\mathrm{x}))=-\csc ^2(\mathrm{x})$
12. $\frac{d}{d x}(\sec (\mathbf{x}))=\sec (\mathbf{x}) \tan (\mathbf{x})$
13. $\frac{d}{d x}(\csc (\mathbf{x}))=-\csc (\mathbf{x}) \cot (\mathbf{x})$

Study it with Videos

Derivative of the Polynomial Function
Derivative of the Logarithm and Exponential Function
Derivative of the Trigonometric Function (cos/sin/tan)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Derivative of the Polynomial Function

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 3.2

Line : 41

Derivative of the Logarithm and Exponential Function

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 3.3

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top