Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
ApplyRecognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
22 Questions around this concept.
If $\mathrm{I}_{\mathrm{n}}$ denotes Unit/ldentity matrix of order $\mathrm{n} \times \mathrm{n}$, then
If matrix
$A=\operatorname{diag}\left[\begin{array}{llll}3 & 5 & 7 & 8\end{array}\right]$ and matrix $B=\left[\begin{array}{cccc}0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2\end{array}\right]$
Then A-B =
Which of these can be a diagonal element of square matrix of order 5?
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025 Memory Based Question: Jan 22, 23, 24, 28 & 29 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
Let A be a matrix such that $A \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ is a scalar matrix and $|3 A|=108$. Then $\mathrm{A}^2$ equals :
Equal Matrices: Two matrices are said to be equal if they have the same order and each element of one matrix is equal to the corresponding elements of another matrix or we can say $a_{i j}=b_{i j}$ where a is the element of one matrix and b is the element of another matrix.
Square matrix: the square matrix is the matrix in which the number of rows = number of columns. So a matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be a square matrix when m = n.
E.g.
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]_{3 \times 3}$ or, $\quad\left[\begin{array}{cc}2 & -4 \\ 7 & 3\end{array}\right]_{2 \times 2}$
Rectangular matrix: Rectangular matrix is the matrix in which is the number of rows ≠ and number of columns.
So a matrix $A=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be a rectangular matrix when $\mathrm{m} \neq \mathrm{n}$.
E.g.
$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]_{3 \times 4}
$
Null matrix/ Zero Matrix: A matrix whose all elements are 0, is called a null matrix.
$\begin{aligned} & \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}, \text { where } \mathrm{a}_{\mathrm{ij}}=0 \\ & \mathrm{Eg},\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]_{,}\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\end{aligned}$
Diagonal matrix: A square matrix is said to be a diagonal matrix, if all its elements except the diagonal elements are zero.
So, a matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$, whenever $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{m}=\mathrm{n}$.
E.g
$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]
$
A diagonal matrix of order n x n having diagonal elements as d1, d2, d3 ………, dn is denoted by $\operatorname{diag}\left[d_1, d_2, d_3 \ldots \ldots \ldots, d_n\right]$
For example
$
A=\left[\begin{array}{cc}
6 & 0 \\
0 & -7
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -9 & 0 \\
0 & 0 & 3
\end{array}\right]
$
so, we can write
$
\mathrm{A}=\operatorname{diag}[6,-7] \text { and } \mathrm{B}=\operatorname{diag}[2,-9,3]
$
Scalar matrix: A diagonal matrix whose all the diagonal elements are equal is called a scalar matrix.
$
\mathrm{A}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right]
$
For a square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ to be scalar matrix
$
\mathrm{a}_{\mathrm{ij}}= \begin{cases}0, & i \neq j \\ c, & i=j\end{cases}
$
Where c is not equal to 0
Unit or Identity Matrix: A diagonal matrix of order n whose all the diagonal elements are equal to one is called an identity matrix of order n. It is represented as .
So, a square matrix $A=\left[a_{i j}\right]_{n \times n}$ is Identity matrix if
$
\mathrm{a}_{\mathrm{ij}}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$
For example,
$
\mathrm{I}_3=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"