130 Marks in JEE Mains Percentile 2025: Expected Rank and Analysis

Hermitian matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 3 Questions around this concept.

Solve by difficulty

If A is Hermitian such that A2 = 0, Then

$
If matrix A=\left[\begin{array}{ccc}1 & 0 & \omega^2 \\ 0 & \omega & 0 \\ 1 & 0 & \omega^2\end{array}\right] \text {. Then matrix } \mathrm{A}+A^\theta \text { is (where } \omega \text { is the cube root of unity }
$

Concepts Covered - 1

Hermitian matrix

Hermitian matrix

A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be Hermitian matrix if $a_{i j}=\overline{a_{j i}} \forall \mathrm{i}, \mathrm{j}$,
i.e. $A=A^\theta, \quad\left[\right.$ where $A^\theta$ is conjugate transpose of matrix $\left.A\right]$

We know that when we take the transpose of a matrix, its diagonal elements remain the same, and while taking conjugate we just change the sign from +ve to -ve and -ve to +ve for the imaginary part of all elements, So to satisfy the condition A?  = A diagonal elements must not change, ⇒ all diagonal element must be purely real, 

E.g. 

Let, $A=\left[\begin{array}{ccc}3 & 3-4 i & 5+2 i \\ 3+4 i & 5 & -2+i \\ 5-2 i & -2-i & 7\end{array}\right]$
Then,

$
\begin{gathered}
\mathrm{A}^{\prime}=\left[\begin{array}{ccc}
3 & 3+4 i & 5-2 i \\
3-4 i & 5 & -2-i \\
5+2 i & -2+i & 7
\end{array}\right] \\
\therefore \mathrm{A}^\theta=\overline{\left(\mathrm{A}^{\prime}\right)}=\left[\begin{array}{ccc}
3 & 3-4 i & 5+2 i \\
3+4 i & 5 & -2+i \\
5-2 i & -2-i & 7
\end{array}\right]
\end{gathered}
$

here, A is Hermitian matrix as $\mathrm{A}=\mathrm{A}^\theta$

Note : 

For any square matrix say A,  with complex number entries, 

$\mathrm{A}+\mathrm{A}^\theta$ is a Hermitian matrix

$
\left[\because\left(\mathrm{A}+\mathrm{A}^\theta\right)^\theta=\mathrm{A}^\theta+\left(\mathrm{A}^\theta\right)^\theta=\mathrm{A}^\theta+\mathrm{A}\right]
$
 

Study it with Videos

Hermitian matrix

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top