JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Symmetric Matrix & Skew Symmetric Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 11 Questions around this concept.

Concepts Covered - 2

symmetric and Skew Symmetric Matrix

Symmetric matrix:

A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be symmetric if $\mathrm{A}^{\prime}=\mathrm{A}$,

$
\begin{aligned}
& \text { i.e., } \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j} \\
& \mathrm{~A}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right] \text { then } \mathrm{A}^{\prime}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
\end{aligned}
$

Clearly, A = A', hence A is a symmetric matrix

Skew-symmetric matrix:  

A square matrix $A=\left[a_{i j}\right]_{m \times n}$ is said to be skew-symmetric if $A^{\prime}=-A$

$
\text { i.e. } \mathrm{A}^{\prime}=-\mathrm{A} \text {, i.e., } \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j}
$
Now if we put $\mathrm{i}=\mathrm{j}$, we have

$
\begin{aligned}
& \mathrm{a}_{\mathrm{ii}}=-\mathrm{a}_{\mathrm{ii}} \\
& \therefore 2 \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow \mathrm{a}_{\mathrm{ii}}=0 \forall \mathrm{i}^{\prime} \mathrm{s}
\end{aligned}
$
That means all the diagonal elements of a skew-symmetric matrix are 0 .
e.g. $\mathrm{A}=\left[\begin{array}{ccc}0 & h & g \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]$, then $\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -h & -g \\ h & 0 & -f \\ g & f & 0\end{array}\right]=-\mathrm{A}$

Properties of Symmetric and Skew Symmetric Matrices

Properties of Symmetric and Skew-symmetric Matrices:

 i) If $A$ is a square matrix, then $A A^{\prime}$ and $A^{\prime} A$ are symmetric matrices
ii) If $A$ is a symmetric matrix, then $-A, k A, A^{\prime}, A^n, B^{\prime} A B$ are also symmetric matrix where $n \in N, k \in R$ and $B$ is a square matrix of order same as matrix $A$.
iii) If $A$ is a skew-symmetric matrix then
1. $A^{2 n}$ is a symmetric matrix for $n ? N$.
2. $A^{2 n+1}$ is a skew-symmetric matrix for $n$ ? $N$
3. $k A$ is also a skew-symmetric matrix, where $k \in R$
4. $B^{\prime} A B$ is also a skew-symmetric matrix where $B$ a square matrix of order same as matrix A
iv) If $A$ and $B$ are symmetric matrices then:
1. $A \pm B, A B+B A$ are symmetric matrices.
2. $A B-B A$ is a skew-symmetric matrix.
v) If A and B are skew-symmetric matrices then:
1. $A \pm B, A B-B A$ are skew-symmetric matrices.
2. $A B+B A$ is a symmetric matrix.

Study it with Videos

symmetric and Skew Symmetric Matrix
Properties of Symmetric and Skew Symmetric Matrices

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top