130 Marks in JEE Mains Percentile 2025: Expected Rank and Analysis

Symmetric Matrix & Skew Symmetric Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 26 Questions around this concept.

Solve by difficulty

What is the value of matrix $(\overline{R O S E})$, where $\mathrm{E}, \mathrm{O}, \mathrm{R}$ and S are square matrices of order 3 ?

Which of the following statement is correct for $3 \times 3$ matrix.

$
\begin{aligned}
&I f A=\left[\begin{array}{cc}
-1 & 7 \\
2 & 3
\end{array}\right]\\
&\text { Then skew symmetric part of } A \text { is? }
\end{aligned}
$

If A is a skew-symmetric matrix of order 3, then the value of |A| is

Which of the following is false (A is any square matrix)

If A and B are symmetric matrices of same order, then $\mathrm{AB-BA}$ is

If A is a square matrix with $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}-\mathrm{j}$, then A is

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

State True / False:
Any square matrix can be written as a sum of a symmetric and a skew symmetric matrix.

Concepts Covered - 2

symmetric and Skew Symmetric Matrix

Symmetric matrix:

A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be symmetric if $\mathrm{A}^{\prime}=\mathrm{A}$,

$
\begin{aligned}
& \text { i.e., } \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j} \\
& \mathrm{~A}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right] \text { then } \mathrm{A}^{\prime}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
\end{aligned}
$

Clearly, A = A', hence A is a symmetric matrix

Skew-symmetric matrix:  

A square matrix $A=\left[a_{i j}\right]_{m \times n}$ is said to be skew-symmetric if $A^{\prime}=-A$

$
\text { i.e. } \mathrm{A}^{\prime}=-\mathrm{A} \text {, i.e., } \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j}
$
Now if we put $\mathrm{i}=\mathrm{j}$, we have

$
\begin{aligned}
& \mathrm{a}_{\mathrm{ii}}=-\mathrm{a}_{\mathrm{ii}} \\
& \therefore 2 \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow \mathrm{a}_{\mathrm{ii}}=0 \forall \mathrm{i}^{\prime} \mathrm{s}
\end{aligned}
$
That means all the diagonal elements of a skew-symmetric matrix are 0 .
e.g. $\mathrm{A}=\left[\begin{array}{ccc}0 & h & g \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]$, then $\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -h & -g \\ h & 0 & -f \\ g & f & 0\end{array}\right]=-\mathrm{A}$

Properties of Symmetric and Skew Symmetric Matrices

Properties of Symmetric and Skew-symmetric Matrices:

 i) If $A$ is a square matrix, then $A A^{\prime}$ and $A^{\prime} A$ are symmetric matrices
ii) If $A$ is a symmetric matrix, then $-A, k A, A^{\prime}, A^n, B^{\prime} A B$ are also symmetric matrix where $n \in N, k \in R$ and $B$ is a square matrix of order same as matrix $A$.
iii) If $A$ is a skew-symmetric matrix then
1. $A^{2 n}$ is a symmetric matrix for $n ? N$.
2. $A^{2 n+1}$ is a skew-symmetric matrix for $n$ ? $N$
3. $k A$ is also a skew-symmetric matrix, where $k \in R$
4. $B^{\prime} A B$ is also a skew-symmetric matrix where $B$ a square matrix of order same as matrix A
iv) If $A$ and $B$ are symmetric matrices then:
1. $A \pm B, A B+B A$ are symmetric matrices.
2. $A B-B A$ is a skew-symmetric matrix.
v) If A and B are skew-symmetric matrices then:
1. $A \pm B, A B-B A$ are skew-symmetric matrices.
2. $A B+B A$ is a symmetric matrix.

Study it with Videos

symmetric and Skew Symmetric Matrix
Properties of Symmetric and Skew Symmetric Matrices

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top