JEE Main Exam Analysis 2026 – Shift Wise Difficulty Level, Paper Review

Symmetric Matrix & Skew Symmetric Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 29 Questions around this concept.

Solve by difficulty

What is the value of matrix $(\overline{R O S E})$, where $\mathrm{E}, \mathrm{O}, \mathrm{R}$ and S are square matrices of order 3 ?

Which of the following statement is correct for $3 \times 3$ matrix.

$
\begin{aligned}
&I f A=\left[\begin{array}{cc}
-1 & 7 \\
2 & 3
\end{array}\right]\\
&\text { Then skew symmetric part of } A \text { is? }
\end{aligned}
$

If A is a skew-symmetric matrix of order 3, then the value of |A| is

Which of the following is false (A is any square matrix)

$A B-B A$ is skew-symmetric matrix. If matrix A and matrix B are

If A and B are symmetric matrices of same order, then $\mathrm{AB-BA}$ is

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

If A is a square matrix with $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}-\mathrm{j}$, then A is

State True / False:
Any square matrix can be written as a sum of a symmetric and a skew symmetric matrix.

JEE Main Previous 10 Year Questions & Solutions
Ace JEE Main with our ultimate ebook featuring previous 10-year question papers (2016–2025), detailed solutions, and clear insights into the latest exam pattern.
Download EBook

Concepts Covered - 2

symmetric and Skew Symmetric Matrix

Symmetric matrix:

A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is said to be symmetric if $\mathrm{A}^{\prime}=\mathrm{A}$,

$
\begin{aligned}
& \text { i.e., } \mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j} \\
& \mathrm{~A}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right] \text { then } \mathrm{A}^{\prime}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
\end{aligned}
$

Clearly, A = A', hence A is a symmetric matrix

Skew-symmetric matrix:  

A square matrix $A=\left[a_{i j}\right]_{m \times n}$ is said to be skew-symmetric if $A^{\prime}=-A$

$
\text { i.e. } \mathrm{A}^{\prime}=-\mathrm{A} \text {, i.e., } \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}} \forall \mathrm{i}, \mathrm{j}
$
Now if we put $\mathrm{i}=\mathrm{j}$, we have

$
\begin{aligned}
& \mathrm{a}_{\mathrm{ii}}=-\mathrm{a}_{\mathrm{ii}} \\
& \therefore 2 \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow \mathrm{a}_{\mathrm{ii}}=0 \forall \mathrm{i}^{\prime} \mathrm{s}
\end{aligned}
$
That means all the diagonal elements of a skew-symmetric matrix are 0 .
e.g. $\mathrm{A}=\left[\begin{array}{ccc}0 & h & g \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]$, then $\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -h & -g \\ h & 0 & -f \\ g & f & 0\end{array}\right]=-\mathrm{A}$

Properties of Symmetric and Skew Symmetric Matrices

Properties of Symmetric and Skew-symmetric Matrices:

 i) If $A$ is a square matrix, then $A A^{\prime}$ and $A^{\prime} A$ are symmetric matrices
ii) If $A$ is a symmetric matrix, then $-A, k A, A^{\prime}, A^n, B^{\prime} A B$ are also symmetric matrix where $n \in N, k \in R$ and $B$ is a square matrix of order same as matrix $A$.
iii) If $A$ is a skew-symmetric matrix then
1. $A^{2 n}$ is a symmetric matrix for $n ? N$.
2. $A^{2 n+1}$ is a skew-symmetric matrix for $n$ ? $N$
3. $k A$ is also a skew-symmetric matrix, where $k \in R$
4. $B^{\prime} A B$ is also a skew-symmetric matrix where $B$ a square matrix of order same as matrix A
iv) If $A$ and $B$ are symmetric matrices then:
1. $A \pm B, A B+B A$ are symmetric matrices.
2. $A B-B A$ is a skew-symmetric matrix.
v) If A and B are skew-symmetric matrices then:
1. $A \pm B, A B-B A$ are skew-symmetric matrices.
2. $A B+B A$ is a symmetric matrix.

Study it with Videos

symmetric and Skew Symmetric Matrix
Properties of Symmetric and Skew Symmetric Matrices

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions