JEE Mains 2025 - Registration (Open), Form Correction, Exam Dates, Syllabus, Pattern, Question Papers

Matrix Multiplication - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Multiplication of two matrices, Properties of Matrix Multiplication is considered one of the most asked concept.

  • 47 Questions around this concept.

Solve by difficulty

 If  then which one of the following statements is not correct ?

If  then adj \left ( 3A^{2} +12A\right )  is equal to :

 

Let   .The only correct statement about the matrix A is

If A and B are square matrices of size n x n such that A^{2}-B^{2}=(A-B)(A+B), then which of the following will be always true?

Let If u1 and u are column matrices such that

 then  u1 + u2 is equal to :

Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$

Given below are two statements :
Statement I : $f(-x)$ is the inverse of the matrix $f(x)$.
Statement II : $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{x}+\mathrm{y})$.

In the light of the above statements, choose the correct answer from the options given below:

 

Concepts Covered - 2

Multiplication of two matrices

Matrix multiplication: 

Product AB can be found if the number of columns in matrix A and the number of rows in matrix B are equal. Otherwise, multiplication AB is not possible.

i) AB is defined only if col(A) = row(B)

ii) BA is defined only if col(B) = row(A)

If 

    \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n}} \\\mathrm{\\B=\left [ b_{ij} \right ]_{n\times p}}

    \\\mathrm{C = AB = \left [ c_{ij} \right ]_{m\times p}} \\\mathrm{Where\;\; c_{ij} = \sum_{j=1}^{n}a_{ij}b_{jk}, 1\leq i\leq m,1\leq k\leq p} \\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a_{i1}b_{1k} + a_{i2}b_{2k} + a_{i3}b_{3k}+ ... + a_{in}b_{nk}}

For examples

\\\mathrm{Suppose,\;two\;matrices\;are\;given}\\\mathrm{A=\begin{bmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} & a_{33} \end{bmatrix}_{2\times3}\;\;\;and\;\;\;B=\begin{bmatrix} b_{11}& b_{12} &b_{13} \\b_{21} &b_{22} &b_{23} \\b_{31} &b_{32} &b_{33} \end{bmatrix}_{3\times3}}\\\\\mathrm{To\:obtain\:the\:entries\:in\:row\:\mathit{i}\,and\,column\,j\,\:of\:AB,\:we\:multiply\:the\:entries\:in\:row\:\mathit{i}\:of\:A\:by\:}\\\mathrm{column\:\mathit{j}\:in\:B\:and\:add.}\\\mathrm{given\:matrices\:A\:and\:B,\:where\:the\:order\:of\:A\:are\:2\times3\:and\:the\:order\:of\:B\:are\:3\times3,}\\\mathrm{the\:product\:of\:AB\:will\:be\:a\:2\times3\:matrix.}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:1\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:first\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{11}\\b_{21} \\b_{31} \end{bmatrix}=a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}}

\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:2\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:second\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{12}\\b_{22} \\b_{32} \end{bmatrix}=a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:3\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:third\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{13}\\b_{23} \\b_{33} \end{bmatrix}=a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33}}\\\\\mathrm{We\:proceed\:the\:same\:way\:to\:obtain\:the\:second\:row\:of\:AB.\:In\:other\:words,\:}\\\mathrm{row\:2\:of\:A\:times\:column\:1\:of\:B;}\\\mathrm{row\:2\:of\:A\:times\:column\:2\:of\:B;}\\\mathrm{row\:2\:of\:A\;times\:column\:3\:of\:B.}

\\\mathrm{When\:complete,\:the\:product\:matrix\:will\:be}\\\\\mathrm{AB=\begin{bmatrix} a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}\;\;& a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}\;\; &a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33} \\ a_{21}\cdot b_{11}+a_{22}\cdot b_{21}+a_{23}\cdot b_{31} \;\;& a_{21}\cdot b_{12}+a_{22}\cdot b_{22}+a_{23}\cdot b_{32} \;\;& a_{21}\cdot b_{13}+a_{22}\cdot b_{23}+a_{23}\cdot b_{33} \end{bmatrix}}

 

Properties of Matrix Multiplication

Properties of matrix multiplication:

    i) Multiplication may or may not be commutative, so AB may or may not be equal to BA.    

    ii) Matrix multiplication is associative, meaning A(BC) = (AB)C

    iii) Matrix multiplication is distributive over addition, mean  A(B+C) = AB + AC  and (B+C)A = BA + CA

    iv) If matrix multiplication of two matrices gives null matrix then it doesn’t mean that any of those two matrices was a null matrix.

             So         AB = O ⇏ A = O or B = O.

           A=\left[\begin{array}{ll} 0 & 2 \\ 0 & 0 \end{array}\right] \text { and } B=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right], \text { then } A B=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]

    v) Cancellation law in matrix multiplication doesn’t hold, means  AB = AC ⇏ B = C

    vi) Matrix multiplication A x A is represented by A2. Thus, A・A・A・A……...n times = An.

    vii) if A is m x n matrix then, \mathrm{I_{m} A=A=A I_{n}}.

Study it with Videos

Multiplication of two matrices
Properties of Matrix Multiplication

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top