Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Multiplication of two matrices, Properties of Matrix Multiplication is considered one of the most asked concept.
77 Questions around this concept.
${ }^{\text {If }} \mathrm{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then which one of the following statements is not correct?
If $A=\left[\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right]$then adj ${100} \left ( 3A^{2} +12A\right )$ is equal to :
Let $
A=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$.The only correct statement about the matrix $A$ is
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
$
\text { If } A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$
then which one of the following holds for all $n \geq 1$, by the principle of mathematical induction
If $A$ and $B$ are square matrices of size $n \times n$ such that $A^2-B^2=(A-B)(A+B)$, then which of the following will be always true?
Let $=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$ If $u_1$ and $u_2$ column $\operatorname{matrices}$ such that
$A u_1=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_2=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_1+u_2$ is equal to :
Let $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $B=A^{20}$.
Then the sum of the elements of the first column of $B$ is :
Let $A=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$. If $A A^T=I_3$, Then $|p|$ is :
Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$
Given below are two statements :
Statement I : $f(-x)$ is the inverse of the matrix $f(x)$.
Statement II : $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{x}+\mathrm{y})$.
In the light of the above statements, choose the correct answer from the options given below:
If $\left[a_{i j}\right]_{3 * 3} \forall a_{i j}=a$ then
Matrix multiplication:
Product AB can be found if the number of columns in matrix A and the number of rows in matrix B are equal. Otherwise, multiplication AB is not possible.
i) AB is defined only if col(A) = row(B)
ii) BA is defined only if col(B) = row(A)
If
$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{I}} \\
& B=\left[b_{i j}\right]_{n \times \mathrm{P}} \\
& \mathrm{C}=\mathrm{AB}=\left[\mathrm{c}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{p}} \\
& \text { Where } c_{\mathrm{ij}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ijj}} \mathrm{~b}_{\mathrm{jk}}, 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{k} \leq \mathrm{p} \\
& =a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+a_{i 3} b_{3 k}+\ldots+a_{i n} b_{n k}
\end{aligned}
$
For examples
Suppose, two matrices are given
$
\mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{33}
\end{array}\right]_{2 \times 3} \text { and } \mathrm{B}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]_{3 \times 3}
$
To obtain the entries in row $i$ and columnj of AB , we multiply the entries in row $i$ of A by column $j$ in B and add.
given matrices A and B , where the order of A are $2 \times 3$ and the order of B are $3 \times 3$, the product of AB will be a $2 \times 3$ matrix.
To obtain the entry in row 1 , column 1 of AB , multiply the first row in A by the first column in B , and add.
$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{11}+\mathrm{a}_{12} \cdot \mathrm{~b}_{21}+\mathrm{a}_{13} \cdot \mathrm{~b}_{31}
$
To obtain the entry in row 1 , column 2 of AB , multiply the first row in A by the second column in B , and add.
$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{12}+\mathrm{a}_{12} \cdot \mathrm{~b}_{22}+\mathrm{a}_{13} \cdot \mathrm{~b}_{32}
$
To obtain the entry in row 1 , column 3 of AB , multiply the first row in A by the third column in B , and add.
$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{13}+\mathrm{a}_{12} \cdot \mathrm{~b}_{23}+\mathrm{a}_{13} \cdot \mathrm{~b}_{33}
$
We proceed the same way to obtain the second row of AB . In other words, row 2 of A times column 1 of $B$; row 2 of $A$ times column 2 of $B$; row 2 of A times column 3 of B.
When complete, the product matrix will be
$
\mathrm{AB}=\left[\begin{array}{lll}
a_{11} \cdot b_{11}+a_{12} \cdot b_{21}+a_{13} \cdot b_{31} & a_{11} \cdot b_{12}+a_{12} \cdot b_{22}+a_{13} \cdot b_{32} & a_{11} \cdot b_{13}+a_{12} \cdot b_{23}+a_{13} \cdot b_{33} \\
a_{21} \cdot b_{11}+a_{22} \cdot b_{21}+a_{23} \cdot b_{31} & a_{21} \cdot b_{12}+a_{22} \cdot b_{22}+a_{23} \cdot b_{32} & a_{21} \cdot b_{13}+a_{22} \cdot b_{23}+a_{23} \cdot b_{33}
\end{array}\right]
$
Properties of matrix multiplication:
i) Multiplication may or may not be commutative, so AB may or may not be equal to BA .
ii) Matrix multiplication is associative, meaning $A(B C)=(A B) C$
iii) Matrix multiplication is distributive over addition, mean $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$
iv) If matrix multiplication of two matrices gives a null matrix then it doesn't mean that any of those two matrices was a null matrix.
So $A B=O \nRightarrow A=O$ or $B=O$.
$A=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
v) Cancellation law in matrix multiplication doesn't hold, which means $A B=A C \nRightarrow B=C$
vii) if A is m x n matrix then, $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}=\mathrm{AI}_{\mathrm{n}}$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"
