JEE Main 2025 1st Attempt vs 2nd Attempt - Which Should You Target?

Matrix Multiplication - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Multiplication of two matrices, Properties of Matrix Multiplication is considered one of the most asked concept.

  • 48 Questions around this concept.

Solve by difficulty

${ }^{\text {If }} \mathrm{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then which one of the following statements is not correct?

If  $A=\left[\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right]$then adj ${100} \left ( 3A^{2} +12A\right )$  is equal to :

 

 


Let $
A=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$.The only correct statement about the matrix $A$ is

$
\text { If } A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$
then which one of the following holds for all $n \geq 1$, by the principle of mathematical induction

If A and B are square matrices of size n x n such that A^{2}-B^{2}=(A-B)(A+B), then which of the following will be always true?

Let $=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$ If $u_1$ and $u_2$ column $\operatorname{matrices}$ such that
$A u_1=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_2=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_1+u_2$ is equal to :

Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$

Given below are two statements :
Statement I : $f(-x)$ is the inverse of the matrix $f(x)$.
Statement II : $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{x}+\mathrm{y})$.

In the light of the above statements, choose the correct answer from the options given below:

 

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

Concepts Covered - 2

Multiplication of two matrices

Matrix multiplication: 

Product AB can be found if the number of columns in matrix A and the number of rows in matrix B are equal. Otherwise, multiplication AB is not possible.

i) AB is defined only if col(A) = row(B)

ii) BA is defined only if col(B) = row(A)

If 

$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{I}} \\
& B=\left[b_{i j}\right]_{n \times \mathrm{P}} \\
& \mathrm{C}=\mathrm{AB}=\left[\mathrm{c}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{p}} \\
& \text { Where } c_{\mathrm{ij}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ijj}} \mathrm{~b}_{\mathrm{jk}}, 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{k} \leq \mathrm{p} \\
& =a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+a_{i 3} b_{3 k}+\ldots+a_{i n} b_{n k}
\end{aligned}
$
For examples

Suppose, two matrices are given

$
\mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{33}
\end{array}\right]_{2 \times 3} \text { and } \mathrm{B}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]_{3 \times 3}
$
To obtain the entries in row $i$ and columnj of AB , we multiply the entries in row $i$ of A by column $j$ in B and add.
given matrices A and B , where the order of A are $2 \times 3$ and the order of B are $3 \times 3$, the product of AB will be a $2 \times 3$ matrix.

To obtain the entry in row 1 , column 1 of AB , multiply the first row in A by the first column in B , and add.

$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{11}+\mathrm{a}_{12} \cdot \mathrm{~b}_{21}+\mathrm{a}_{13} \cdot \mathrm{~b}_{31}
$

To obtain the entry in row 1 , column 2 of AB , multiply the first row in A by the second column in B , and add.

$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{12}+\mathrm{a}_{12} \cdot \mathrm{~b}_{22}+\mathrm{a}_{13} \cdot \mathrm{~b}_{32}
$
To obtain the entry in row 1 , column 3 of AB , multiply the first row in A by the third column in B , and add.

$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\mathrm{a}_{11} \cdot \mathrm{~b}_{13}+\mathrm{a}_{12} \cdot \mathrm{~b}_{23}+\mathrm{a}_{13} \cdot \mathrm{~b}_{33}
$
We proceed the same way to obtain the second row of AB . In other words, row 2 of A times column 1 of $B$; row 2 of $A$ times column 2 of $B$; row 2 of A times column 3 of B.
When complete, the product matrix will be

$
\mathrm{AB}=\left[\begin{array}{lll}
a_{11} \cdot b_{11}+a_{12} \cdot b_{21}+a_{13} \cdot b_{31} & a_{11} \cdot b_{12}+a_{12} \cdot b_{22}+a_{13} \cdot b_{32} & a_{11} \cdot b_{13}+a_{12} \cdot b_{23}+a_{13} \cdot b_{33} \\
a_{21} \cdot b_{11}+a_{22} \cdot b_{21}+a_{23} \cdot b_{31} & a_{21} \cdot b_{12}+a_{22} \cdot b_{22}+a_{23} \cdot b_{32} & a_{21} \cdot b_{13}+a_{22} \cdot b_{23}+a_{23} \cdot b_{33}
\end{array}\right]
$
 

 

Properties of Matrix Multiplication

Properties of matrix multiplication:

i) Multiplication may or may not be commutative, so AB may or may not be equal to BA .
ii) Matrix multiplication is associative, meaning $A(B C)=(A B) C$
iii) Matrix multiplication is distributive over addition, mean $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$
iv) If matrix multiplication of two matrices gives a null matrix then it doesn't mean that any of those two matrices was a null matrix.

So $A B=O \nRightarrow A=O$ or $B=O$.

$A=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

v) Cancellation law in matrix multiplication doesn't hold, which means $A B=A C \nRightarrow B=C$

 vii) if A is m x n matrix then, $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}=\mathrm{AI}_{\mathrm{n}}$.

Study it with Videos

Multiplication of two matrices
Properties of Matrix Multiplication

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top