Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
25 Questions around this concept.
If $A+B+C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A+2 B+C=\left[\begin{array}{ll}4 & 6 \\ 4 & 5\end{array}\right]$ and $2 A+3 B+C=\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]$, then matrix $A$ is
Find the value of A+B if $A=\left[\begin{array}{ccc}a & b & c \\ a^2 & b^2 & c^2 \\ b c & c a & a b\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^3 & b^3 & c^3 \\ a^2 & b^2 & c^2\end{array}\right]$
$
\begin{aligned}
&I f A+B=\left|\begin{array}{ll}
7 & 4 \\
8 & 9
\end{array}\right| \text { and } A-B=\left|\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right|\\
&\text { Then the value of } \mathrm{A} \text { is? }
\end{aligned}
$
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025 Memory Based Question: Jan 22, 23, 24, 28 & 29 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
$\begin{aligned} &\text { If } \quad P=A+B+C, Q=B+C+D, B+C=R, P+Q= A+D+X, \text { Then } X=\text { ? }\end{aligned}$
Which of the following addition of matrix is possible?
If A is a square matrix such that $A^2=A$, then $(I-A)^3+A$ is equal to
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Addition of matrices:
Two matrices can be added only when they are of the same order
If two matrices of A and B are of the same order, they are said to be conformable for addition.
If A and B are matrices of order m × n, then their sum will also be a matrix of the same order and in addition, corresponding elements of A and B get added.
So if $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$ for all $i, j$ eg
$
\begin{aligned}
A & =\left[\begin{array}{lll}
10 & 20 & 30 \\
20 & 30 & 40 \\
30 & 40 & 50
\end{array}\right], \quad B=\left[\begin{array}{lll}
50 & 40 & 30 \\
40 & 30 & 20 \\
30 & 20 & 10
\end{array}\right] \\
A+B & =\left[\begin{array}{lll}
10+50 & 20+40 & 30+30 \\
20+40 & 30+30 & 40+20 \\
30+30 & 40+20 & 50+10
\end{array}\right]=\left[\begin{array}{lll}
60 & 60 & 60 \\
60 & 60 & 60 \\
60 & 60 & 60
\end{array}\right]
\end{aligned}
$
Subtraction of matrices:
Two matrices can be subtracted only when they are of the same order. If A and B are matrices of order m × n then their difference will also be a matrix of the same order and in subtraction, corresponding elements of A and B get subtracted. So if
$A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}$ for all $i, j$ eg
$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{lll}
10 & 20 & 30 \\
20 & 30 & 40 \\
30 & 40 & 50
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{lll}
50 & 40 & 30 \\
40 & 30 & 20 \\
30 & 20 & 10
\end{array}\right] \\
\mathrm{A}-\mathrm{B} & =\left[\begin{array}{lll}
10-50 & 20-40 & 30-30 \\
20-40 & 30-30 & 40-20 \\
30-30 & 40-20 & 50-10
\end{array}\right]=\left[\begin{array}{ccc}
-40 & -20 & 0 \\
-20 & 0 & 20 \\
0 & 20 & 40
\end{array}\right]
\end{aligned}
$
Properties of matrix addition:
1. Matrix addition is commutative, $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
2. Matrix addition is associative, $A+(B+C)=(A+B)+C$
3. Additive identity exist, means there exist a matrix $O$ (null matrix) such that $A+O=A=O+A$ (Here $O$ has same order as A )
4. Existence of additive inverse means there exists a matrix $B$ such that $A+B=O=B+A$
5. Cancellation property:
If $A+B=A+C$ then $B=C$
If $\mathrm{A}+\mathrm{C}=\mathrm{B}+\mathrm{C}$ then $\mathrm{A}=\mathrm{B}$
Note: all matrix taken in above property explanation has same order which is $\mathrm{m} \times \mathrm{n}$.
Scalar multiplication:
Let k be any scalar number, and $A=\left[a_{i j}\right]_{m \times n}$ be a matrix. Then the matrix is obtained by multiplying every element A by a scalar k and denoted as kA.
$\begin{aligned} & k A=\left[k a_{i j}\right]_{m \times n} \\ & \qquad \mathrm{~A}=\left[\begin{array}{ll}2 & 6 \\ 3 & 7 \\ 5 & 8\end{array}\right] \text { then, } 3 \mathrm{~A}=\left[\begin{array}{ll}3 \times 2 & 3 \times 6 \\ 3 \times 3 & 3 \times 7 \\ 3 \times 5 & 3 \times 8\end{array}\right]=\left[\begin{array}{cc}6 & 18 \\ 9 & 21 \\ 15 & 24\end{array}\right]\end{aligned}$
Properties of scalar multiplication:
If $A$ and $B$ are two matrices and $k, 1$ are scalar then
i) $k(A+B)=k A+k B$
ii) $k l(A)=k(I A)=l(k A)$
iii) $(k+1) A=k A+I A$
iv) $(-k) A=-(k A)=k(-A)$
v) $1 \mathrm{~A}=\mathrm{A},(-1) \mathrm{A}=-\mathrm{A}$
Note: $A$ and $B$ have the same order $m \times n$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"