130 Marks in JEE Mains Percentile 2025: Expected Rank and Analysis

Matrix operations - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 25 Questions around this concept.

Solve by difficulty

If $A+B+C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A+2 B+C=\left[\begin{array}{ll}4 & 6 \\ 4 & 5\end{array}\right]$ and $2 A+3 B+C=\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]$, then matrix $A$ is

Find the value of A+B if $A=\left[\begin{array}{ccc}a & b & c \\ a^2 & b^2 & c^2 \\ b c & c a & a b\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^3 & b^3 & c^3 \\ a^2 & b^2 & c^2\end{array}\right]$

$
\begin{aligned}
&I f A+B=\left|\begin{array}{ll}
7 & 4 \\
8 & 9
\end{array}\right| \text { and } A-B=\left|\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right|\\
&\text { Then the value of } \mathrm{A} \text { is? }
\end{aligned}
$

If $\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]$ then the value of $\mathrm{x}+\mathrm{y}$ is

$\begin{aligned} &\text { If } \quad P=A+B+C, Q=B+C+D, B+C=R, P+Q= A+D+X, \text { Then } X=\text { ? }\end{aligned}$

Which of the following addition of matrix is possible?

If A is a square matrix such that $A^2=A$, then $(I-A)^3+A$ is equal to

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

For any two matrices A and B, we have

Concepts Covered - 3

Addition and Subtraction of Matrices

Addition of matrices:

Two matrices can be added only when they are of the same order

If two matrices of A and B are of the same order, they are said to be conformable for addition.

If A and B are matrices of order m × n, then their sum will also be a matrix of the same order and in addition, corresponding elements of A and B get added.

So if $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$ for all $i, j$ eg

$
\begin{aligned}
A & =\left[\begin{array}{lll}
10 & 20 & 30 \\
20 & 30 & 40 \\
30 & 40 & 50
\end{array}\right], \quad B=\left[\begin{array}{lll}
50 & 40 & 30 \\
40 & 30 & 20 \\
30 & 20 & 10
\end{array}\right] \\
A+B & =\left[\begin{array}{lll}
10+50 & 20+40 & 30+30 \\
20+40 & 30+30 & 40+20 \\
30+30 & 40+20 & 50+10
\end{array}\right]=\left[\begin{array}{lll}
60 & 60 & 60 \\
60 & 60 & 60 \\
60 & 60 & 60
\end{array}\right]
\end{aligned}
$

Subtraction of matrices:

Two matrices can be subtracted only when they are of the same order. If A and B are matrices of order m × n then their difference will also be a matrix of the same order and in subtraction, corresponding elements of A and B get subtracted. So if 

$A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ Then, $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}$ for all $i, j$ eg

$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{lll}
10 & 20 & 30 \\
20 & 30 & 40 \\
30 & 40 & 50
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{lll}
50 & 40 & 30 \\
40 & 30 & 20 \\
30 & 20 & 10
\end{array}\right] \\
\mathrm{A}-\mathrm{B} & =\left[\begin{array}{lll}
10-50 & 20-40 & 30-30 \\
20-40 & 30-30 & 40-20 \\
30-30 & 40-20 & 50-10
\end{array}\right]=\left[\begin{array}{ccc}
-40 & -20 & 0 \\
-20 & 0 & 20 \\
0 & 20 & 40
\end{array}\right]
\end{aligned}
$
 

Properties of matrix addition

Properties of matrix addition:

1. Matrix addition is commutative, $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
2. Matrix addition is associative, $A+(B+C)=(A+B)+C$
3. Additive identity exist, means there exist a matrix $O$ (null matrix) such that $A+O=A=O+A$ (Here $O$ has same order as A )
4. Existence of additive inverse means there exists a matrix $B$ such that $A+B=O=B+A$
5. Cancellation property:

If $A+B=A+C$ then $B=C$
If $\mathrm{A}+\mathrm{C}=\mathrm{B}+\mathrm{C}$ then $\mathrm{A}=\mathrm{B}$
Note: all matrix taken in above property explanation has same order which is $\mathrm{m} \times \mathrm{n}$.

Scalar Multiplication of Matrix

Scalar multiplication:

Let k be any scalar number, and $A=\left[a_{i j}\right]_{m \times n}$  be a matrix. Then the matrix is obtained by multiplying every element A by a scalar k and denoted as kA.

$\begin{aligned} & k A=\left[k a_{i j}\right]_{m \times n} \\ & \qquad \mathrm{~A}=\left[\begin{array}{ll}2 & 6 \\ 3 & 7 \\ 5 & 8\end{array}\right] \text { then, } 3 \mathrm{~A}=\left[\begin{array}{ll}3 \times 2 & 3 \times 6 \\ 3 \times 3 & 3 \times 7 \\ 3 \times 5 & 3 \times 8\end{array}\right]=\left[\begin{array}{cc}6 & 18 \\ 9 & 21 \\ 15 & 24\end{array}\right]\end{aligned}$

Properties of scalar multiplication: 

If $A$ and $B$ are two matrices and $k, 1$ are scalar then
i) $k(A+B)=k A+k B$
ii) $k l(A)=k(I A)=l(k A)$
iii) $(k+1) A=k A+I A$
iv) $(-k) A=-(k A)=k(-A)$
v) $1 \mathrm{~A}=\mathrm{A},(-1) \mathrm{A}=-\mathrm{A}$

Note: $A$ and $B$ have the same order $m \times n$.

Study it with Videos

Addition and Subtraction of Matrices
Properties of matrix addition
Scalar Multiplication of Matrix

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top