How to Score Above 200 in JEE Main 2025 in 21 days?

Transpose of a Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Transpose of a Matrix is considered one the most difficult concept.

  • 13 Questions around this concept.

Solve by difficulty

Let $\mathrm{A}$ be a square matrix such that $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$. Then $\frac{1}{2} \mathrm{~A}\left[\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)^2+\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^2\right]$ is equal to

Concepts Covered - 1

Transpose of a Matrix

Transpose of a matrix

In simple language transpose of a matrix is changing its rows into columns or columns into rows. Let \\\mathrm{A=\left [ a_{ij} \right ]_{m\times n} }  be a matrix, then matrix obtained by changing rows into columns or vice-versa will give transpose of A which is denoted as A’ or AT. Hence \\\mathrm{A'=\left [ a_{ji} \right ]_{n\times m} } 

E.g 

\\\mathrm{A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow A' = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32}\\ a_{13} & a_{23} & a_{33} \end{bmatrix}} \\\\\\\mathrm{If, \;A=\begin{bmatrix} 2 &6 \\ 3& 7\\ 5& 8 \end{bmatrix}\;\;then,\;\;A'=\begin{bmatrix} 2 &3 &5 \\6 &7 & 8 \end{bmatrix}}

 

Properties of the transpose of a matrix:

If A’ and B’ denotes the transpose of the matrices A and B, then :
    i) (A’)’=A

    ii) (A±B)’=A’ ± B’ (given that A and B are conformable for matrix addition)

    iii) (kA)’ = kA’

    iv) (AB)’ = B’A’  ( given that A and B are conformable for matrix product AB)

Study it with Videos

Transpose of a Matrix

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top