Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations
Transpose of a Matrix is considered one the most difficult concept.
21 Questions around this concept.
Let $A=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$. If $A A^T=I_3$, Then $|p|$ is :
Let $\mathrm{A}$ be a square matrix such that $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$. Then $\frac{1}{2} \mathrm{~A}\left[\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)^2+\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^2\right]$ is equal to
If $\left(A^2-3 A+2 I\right)^{\prime}=0$, Then $A$ is :
New: JEE Main 2025 Official Answer Key OUT; Download Now
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025 Memory Based Question: Jan 22, 23, 24, 28 & 29 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
A is skew-symmetric matrix of order n and X is 1xn column matrix, then $X A X^T$ is
Transpose of a matrix
In simple language, the transpose of a matrix is changing its rows into columns or columns into rows. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ be a matrix, then matrix obtained by changing rows into columns or vice-versa will give transpose of $A$ which is denoted as $A^{\prime}$ or $A^{\top}$. Hence $A^{\prime}=\left[a_{j i}\right]_{n \times m}$
E.g
$
\mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow \mathrm{A}^{\prime}=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$
If, $A=\left[\begin{array}{ll}2 & 6 \\ 3 & 7 \\ 5 & 8\end{array}\right]$ then, $A^{\prime}=\left[\begin{array}{lll}2 & 3 & 5 \\ 6 & 7 & 8\end{array}\right]$
Properties of the transpose of a matrix:
If $A^{\prime}$ and $B^{\prime}$ denote the transpose of the matrices $A$ and $B$, then :
i) $\left(A^{\prime}\right)^{\prime}=A$
ii) $(A \pm B)^{\prime}=A^{\prime} \pm B^{\prime}$ (given that $A$ and $B$ are conformable for matrix addition)
iii) $(k A)^{\prime}=k A^{\prime}$
iv) $(A B)^{\prime}=B^{\prime} A^{\prime}($ given that $A$ and $B$ are conformable for matrix product $A B$ )
"Stay in the loop. Receive exam news, study resources, and expert advice!"