130 Marks in JEE Mains Percentile 2025: Expected Rank and Analysis

Triangular matrix (Upper and Lower triangular matrix) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 6 Questions around this concept.

Solve by difficulty

$
\text { Find the minimum number of zeros in the upper triangular matrix of order } \mathrm{n} \text {. }
$

Maximum number of distinct element in a lower triangular matrix of order n is:

Which of the following is not a strictly Triangular matrix:

Concepts Covered - 1

Triangular matrix (Upper and Lower triangular matrix)

Triangular matrix: A square matrix whose all elements above or below the principal diagonal are zero is called a Triangular matrix.

A triangular matrix is further classified into two types:

 Upper triangular matrix

 Lower triangular matrix

Upper triangular matrix: A square matrix whose all elements below the principal diagonal are zero is called an upper triangular matrix.

Or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be upper triangular if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}=0$ when $\mathrm{i}>\mathrm{j}$.
E.g.,

$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} \\
0 & 0 & a_{33} & a_{34} & a_{35} \\
0 & 0 & 0 & a_{44} & a_{45} \\
0 & 0 & 0 & 0 & a_{55}
\end{array}\right]
$

Lower triangular matrix: A square matrix whose all elements above the principal diagonal are zero is called a lower triangular matrix.

Or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be upper triangular if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}=0$ when $\mathrm{i}<\mathrm{j}$. Eg.

$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 \\
a_{41} & a_{42} & a_{43} & a_{44} & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\right]
$
 

Study it with Videos

Triangular matrix (Upper and Lower triangular matrix)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top