VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 7th April | NO Further Extensions!
6 Questions around this concept.
$
\text { Find the minimum number of zeros in the upper triangular matrix of order } \mathrm{n} \text {. }
$
Maximum number of distinct element in a lower triangular matrix of order n is:
Which of the following is not a strictly Triangular matrix:
JEE Main Questions: April 4: Shift 1 | Shift-2 | April 3: Shift 1 | Shift 2| April 2: Shift 1 | Shift-2 | Overall Analysis
JEE Main 2025: Mock Tests | PYQs | Rank Predictor | College Predictor | Admit Card Link
New: Meet Careers360 experts in your city | Official Question Paper-Session 1
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Triangular matrix: A square matrix whose all elements above or below the principal diagonal are zero is called a Triangular matrix.
A triangular matrix is further classified into two types:
Upper triangular matrix
Lower triangular matrix
Upper triangular matrix: A square matrix whose all elements below the principal diagonal are zero is called an upper triangular matrix.
Or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be upper triangular if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}=0$ when $\mathrm{i}>\mathrm{j}$.
E.g.,
$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} \\
0 & 0 & a_{33} & a_{34} & a_{35} \\
0 & 0 & 0 & a_{44} & a_{45} \\
0 & 0 & 0 & 0 & a_{55}
\end{array}\right]
$
Lower triangular matrix: A square matrix whose all elements above the principal diagonal are zero is called a lower triangular matrix.
Or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be upper triangular if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}=0$ when $\mathrm{i}<\mathrm{j}$. Eg.
$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 \\
a_{41} & a_{42} & a_{43} & a_{44} & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\right]
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"