Careers360 Logo
Is 75% Criteria Removed from JEE Main 2025? - Check Latest Updates

Triangular matrix (Upper and Lower triangular matrix) - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 2 Questions around this concept.

Concepts Covered - 1

Triangular matrix (Upper and Lower triangular matrix)

Triangular matrix: A square matrix whose all elements above or below principal diagonal are zero is called a Triangular matrix.

A triangular matrix is further classified into two types:

  1.  Upper triangular matrix
  2.  Lower triangular matrix

 

Upper triangular matrix: A square matrix whose all elements below principal diagonal are zero is called upper triangular matrix.

Or \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n}}  is said to be upper triangular if \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n} = 0} when i > j.

E.g., 

\\\mathrm{\begin{bmatrix} a_{11} & a_{12} &a_{13} &a_{14} &a_{15} \\ 0& a_{22}& a_{23} & a_{24} &a_{25} \\ 0 & 0 &a_{33} & a_{34} & a_{35}\\ 0 & 0 & 0 &a_{44} & a_{45}\\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix}}

 

Lower triangular matrix: A square matrix whose all elements above principal diagonal is zero is called a lower triangular matrix.

Or \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n}} is said to be upper triangular if \\\mathrm{ A = \left [ a_{ij} \right ]_{m\times n} = 0}  when i < j.

Eg.

 \\\mathrm{\begin{bmatrix} a_{11} & 0 & 0 & 0 &0 \\ a_{21} & a_{22} & 0 & 0 &0 \\ a_{31} & a_{32} & a_{33} & 0 & 0\\ a_{41} & a_{42} & a_{43} & a_{44} &0 \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{bmatrix}}

Study it with Videos

Triangular matrix (Upper and Lower triangular matrix)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top