UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Solution of System of Linear Equations Using Matrix Method is considered one of the most asked concept.
38 Questions around this concept.
If the system of linear equations
$
\begin{aligned}
& 2 x+2 y+3 z=a \\
& 3 x-y+5 z=b \\
& x-3 y+2 z=c
\end{aligned}
$
where $a, b, c$ are non-zero real numbers, has more than one solution, then :
If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & x \\ 3 & -1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}y \\ x \\ 1\end{array}\right]$ that $\mathrm{AB}=\left[\begin{array}{l}6 \\ 8\end{array}\right]_{\text {then: }}$
An ordered pair $(\alpha, \beta)$ for which the system of linear equations
$
\begin{aligned}
& (1+\alpha) x+\beta y+z=2 \\
& \alpha x+(1+\beta) y+z=3 \\
& \alpha x+\beta y+2 z=2
\end{aligned}
$
has a unique solution, is :
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
Solve the system of equations
x + 3y –2z = 0, 2x –y + 4z = 0, x –11y + 14z = 0.
If the system of equations $x+4 y-z=\lambda$, $7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ has infinitely many solutions, then $(2 \mu .+3 \lambda)$ is equal to :
If the system of equations
$\mathrm{\begin{aligned} & 11 x+y+\lambda z=-5 \\ & 2 x+3 y+5 z=3 \\ & 8 x-19 y-39 z=\mu\end{aligned}}$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
If the system of linear equations
$\begin{aligned} & 2 x+2 a y+a z=0 \\ & 2 x+3 b y+b z=0 \\ & 2 x+4 c y+c z=0\end{aligned}$
has more than one solution (where $a, b, c$ are distinct nonzero real numbers, then
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan
Let us consider n linear equations in n unknowns, given as below
$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_1+\mathrm{a}_{12} \mathrm{x}_2+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_1 \\
& \mathrm{a}_{21} \mathrm{x}_1+\mathrm{a}_{22} \mathrm{x}_2+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_2 \\
& \text {... ... ... ... ... ... } \\
& \text {... ... ... ... ... ... } \\
& \mathrm{a}_{\mathrm{n} 1} \mathrm{x}_1+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_2+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}
\end{aligned}
$
Here $\mathrm{x}_1, \mathrm{x}_2, \ldots \mathrm{x}_{\mathrm{n}}$ are n unknown variables
if $b_1=b_2=\ldots=b_n=0$ then the system of equation is known as homogenous system of equation and if any of $b_1, b_2, \ldots b_n$ is non - zero then it is called non homogenous system of equation
The above system of equations can be written in matrix form as
$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right]=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$
$\Rightarrow \mathrm{AX}=\mathrm{B}$, where
$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right], \mathrm{X}=\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right], \mathrm{B}=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$
Premultiplying equation $A X=B$ by $A^{-1}$, we get
$
\begin{aligned}
& A^{-1}(A X)=A^{-1} B \Rightarrow\left(A^{-1} A\right) X=A^{-1} B \\
& \Rightarrow I X=A^{-1} B \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$
X=\frac{\operatorname{adj} A}{|A|} B
$
Types of equation:
1. System of equations is non-homogenous:
If $|A| \neq 0$, then the system of equations is consistent and has a unique solution $X=A^{-1} B$
If $|A|=0$ and $(\operatorname{adj} A) \cdot B \neq 0$, then the system of equations is inconsistent and has no solution.
If $|A|=0$ and $(\operatorname{adj} A) \cdot B=0$, then the system of equations is consistent and has infinite number of solutions.
1. System of equations is homogenous:
If $|A| \neq 0$, then the system of equations has only one solution which is the trivial solution.
If $|\mathrm{A}|=0$, then the system of equations has non-trivial solution and it has an infinite number of solutions.
"Stay in the loop. Receive exam news, study resources, and expert advice!"