JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Solving Linear Equations Using Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Solution of System of Linear Equations Using Matrix Method is considered one of the most asked concept.

  • 38 Questions around this concept.

Solve by difficulty

If the system of linear equations

$
\begin{aligned}
& 2 x+2 y+3 z=a \\
& 3 x-y+5 z=b \\
& x-3 y+2 z=c
\end{aligned}
$

where $a, b, c$ are non-zero real numbers, has more than one solution, then :

If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & x \\ 3 & -1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}y \\ x \\ 1\end{array}\right]$ that $\mathrm{AB}=\left[\begin{array}{l}6 \\ 8\end{array}\right]_{\text {then: }}$

An ordered pair $(\alpha, \beta)$ for which the system of linear equations

$
\begin{aligned}
& (1+\alpha) x+\beta y+z=2 \\
& \alpha x+(1+\beta) y+z=3 \\
& \alpha x+\beta y+2 z=2
\end{aligned}
$

has a unique solution, is :

Solve the system of equations

x + 3y –2z = 0, 2x –y + 4z = 0, x –11y + 14z = 0.

If the system of equations $x+4 y-z=\lambda$, $7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ has infinitely many solutions, then $(2 \mu .+3 \lambda)$ is equal to :

If the system of equations

$\mathrm{\begin{aligned} & 11 x+y+\lambda z=-5 \\ & 2 x+3 y+5 z=3 \\ & 8 x-19 y-39 z=\mu\end{aligned}}$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :

If the system of linear equations

$\begin{aligned} & 2 x+2 a y+a z=0 \\ & 2 x+3 b y+b z=0 \\ & 2 x+4 c y+c z=0\end{aligned}$

has more than one solution (where $a, b, c$ are distinct nonzero real numbers, then

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

Concepts Covered - 1

Solution of System of Linear Equations Using Matrix Method

Let us consider n linear equations in n unknowns, given as below

$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_1+\mathrm{a}_{12} \mathrm{x}_2+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_1 \\
& \mathrm{a}_{21} \mathrm{x}_1+\mathrm{a}_{22} \mathrm{x}_2+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_2 \\
& \text {... ... ... ... ... ... } \\
& \text {... ... ... ... ... ... } \\
& \mathrm{a}_{\mathrm{n} 1} \mathrm{x}_1+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_2+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}
\end{aligned}
$
Here $\mathrm{x}_1, \mathrm{x}_2, \ldots \mathrm{x}_{\mathrm{n}}$ are n unknown variables
if $b_1=b_2=\ldots=b_n=0$ then the system of equation is known as homogenous system of equation and if any of $b_1, b_2, \ldots b_n$ is non - zero then it is called non homogenous system of equation

The above system of equations can be written in matrix form as

$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right]=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$

$\Rightarrow \mathrm{AX}=\mathrm{B}$, where

$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right], \mathrm{X}=\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right], \mathrm{B}=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$

Premultiplying equation $A X=B$ by $A^{-1}$, we get

$
\begin{aligned}
& A^{-1}(A X)=A^{-1} B \Rightarrow\left(A^{-1} A\right) X=A^{-1} B \\
& \Rightarrow I X=A^{-1} B \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$
X=\frac{\operatorname{adj} A}{|A|} B
$
Types of equation:
1. System of equations is non-homogenous:

If $|A| \neq 0$, then the system of equations is consistent and has a unique solution $X=A^{-1} B$
If $|A|=0$ and $(\operatorname{adj} A) \cdot B \neq 0$, then the system of equations is inconsistent and has no solution.
If $|A|=0$ and $(\operatorname{adj} A) \cdot B=0$, then the system of equations is consistent and has infinite number of solutions.
1. System of equations is homogenous:

If $|A| \neq 0$, then the system of equations has only one solution which is the trivial solution.
If $|\mathrm{A}|=0$, then the system of equations has non-trivial solution and it has an infinite number of solutions.

Study it with Videos

Solution of System of Linear Equations Using Matrix Method

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top