What JEE Rank Is Required To Get Into IISc

Solving Linear Equations Using Matrix - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Solution of System of Linear Equations Using Matrix Method is considered one of the most asked concept.

  • 28 Questions around this concept.

Solve by difficulty

If      and      that then:

Concepts Covered - 1

Solution of System of Linear Equations Using Matrix Method

Let us consider n linear equations in n unknowns, given as below

\\\mathrm{a_{11}x_1+a_{12}x_2+...+a_{1n}x_n = b_1} \\\mathrm{a_{21}x_1+a_{22}x_2+...+a_{2n}x_n = b_2} \\\mathrm{...\;\;\;...\;\;\;...\;\;\;...\;\;\;\;\;\;\;\;...\;\;\;\;\;\;...} \\\mathrm{...\;\;\;...\;\;\;...\;\;\;...\;\;\;\;\;\;\;\;...\;\;\;\;\;\;...} \\\mathrm{a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n = b_n} \\\mathrm{Here \; x_{1}, x_2,...x_n \; are\,\,n\, \;unknown\; variables} \\\\\mathrm{if \; b_1=b_2 =...=b_n=0\; then\; the\; system \; of \; equation \; is} \\\mathrm{known\; as \; homogenous\; system \; of \; equation\; and \;if } \\\mathrm{any \; of \;b_1,b_2,...b_n \; is\; non-zero\,\; then \; it \; is \;called\; } \\\mathrm{non\; homogenous\; system \; of \; equation}

 

The above system of equations can be written in matrix form as 

\\\mathrm{\begin{bmatrix} a_{11} & a_{12} & ... & ... & a_{1n}\\ a_{21} & a_{22} & ... & ... & a_{2n}\\ ... & ... & ... & ... & ...\\ ... & ... & ... & ... & ...\\ a_{n1} & a_{n2} & ... & ... & a_{nn} \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ ...\\ ...\\ x_n \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ ...\\ ...\\ b_n \end{bmatrix}} \\\\\mathrm{\Rightarrow AX = B, \; where} \\\\\mathrm{A = \begin{bmatrix} a_{11} & a_{12} & ... & ... & a_{1n}\\ a_{21} & a_{22} & ... & ... & a_{2n}\\ ... & ... & ... & ... & ...\\ ... & ... & ... & ... & ...\\ a_{n1} & a_{n2} & ... & ... & a_{nn} \end{bmatrix} , X=\begin{bmatrix} x_1\\ x_2\\ ...\\ ...\\ x_n \end{bmatrix}, B=\begin{bmatrix} b_1\\ b_2\\ ...\\ ...\\ b_n \end{bmatrix}}

 

Premultiplying equation AX=B by A-1, we get

     A-1(AX) = A-1B ⇒ (A-1A)X = A-1B

                     ⇒ IX = A-1B

                     ⇒  X = A-1

                      ⇒   \mathrm{X=\frac{adj A}{\left | A \right |}B}

 

Types of equation :

  1. System of equations is non-homogenous:

    1. If |A| ≠ 0, then the system of equations is consistent and has a unique solution X = A-1B

    2. If |A| = 0 and (adj A)·B ≠ 0, then the system of equations is inconsistent and has no solution.

    3. If |A| = 0 and (adj A)·B = 0, then the system of equations is consistent and has infinite number of solutions.

  2. System of equations is homogenous:

    1. If |A| ≠ 0, then the system of equations has only one solution which is the trivial solution.

    2. If |A| = 0, then the system of equations has non-trivial solution and it has an infinite number of solutions.

Study it with Videos

Solution of System of Linear Equations Using Matrix Method

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top