Parul University B.Tech Admissions 2025
Registrations Deadline- 12th June | India's youngest NAAC A++ accredited University | NIRF rank band 151-200 | 2200 Recruiters | 45.98 Lakhs Highest Package
Solution of System of Linear Equations Using Matrix Method is considered one of the most asked concept.
50 Questions around this concept.
If the system of linear equations
$
\begin{aligned}
& 2 x+2 y+3 z=a \\
& 3 x-y+5 z=b \\
& x-3 y+2 z=c
\end{aligned}
$
where $a, b, c$ are non-zero real numbers, has more than one solution, then :
If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & x \\ 3 & -1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}y \\ x \\ 1\end{array}\right]$ that $\mathrm{AB}=\left[\begin{array}{l}6 \\ 8\end{array}\right]_{\text {then: }}$
An ordered pair $(\alpha, \beta)$ for which the system of linear equations
$
\begin{aligned}
& (1+\alpha) x+\beta y+z=2 \\
& \alpha x+(1+\beta) y+z=3 \\
& \alpha x+\beta y+2 z=2
\end{aligned}
$
has a unique solution, is :
Solve the system of equations
x + 3y –2z = 0, 2x –y + 4z = 0, x –11y + 14z = 0.
If the system of equations $x+4 y-z=\lambda$, $7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ has infinitely many solutions, then $(2 \mu .+3 \lambda)$ is equal to :
If the system of equations
$\mathrm{\begin{aligned} & 11 x+y+\lambda z=-5 \\ & 2 x+3 y+5 z=3 \\ & 8 x-19 y-39 z=\mu\end{aligned}}$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
If the system of linear equations
$\begin{aligned} & 2 x+2 a y+a z=0 \\ & 2 x+3 b y+b z=0 \\ & 2 x+4 c y+c z=0\end{aligned}$
has more than one solution (where $a, b, c$ are distinct nonzero real numbers), then
Registrations Deadline- 12th June | India's youngest NAAC A++ accredited University | NIRF rank band 151-200 | 2200 Recruiters | 45.98 Lakhs Highest Package
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
Let us consider n linear equations in n unknowns, given as below
$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_1+\mathrm{a}_{12} \mathrm{x}_2+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_1 \\
& \mathrm{a}_{21} \mathrm{x}_1+\mathrm{a}_{22} \mathrm{x}_2+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_2 \\
& \text {... ... ... ... ... ... } \\
& \text {... ... ... ... ... ... } \\
& \mathrm{a}_{\mathrm{n} 1} \mathrm{x}_1+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_2+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}
\end{aligned}
$
Here $\mathrm{x}_1, \mathrm{x}_2, \ldots \mathrm{x}_{\mathrm{n}}$ are n unknown variables
if $b_1=b_2=\ldots=b_n=0$ then the system of equation is known as homogenous system of equation and if any of $b_1, b_2, \ldots b_n$ is non - zero then it is called non homogenous system of equation
The above system of equations can be written in matrix form as
$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right]=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$
$\Rightarrow \mathrm{AX}=\mathrm{B}$, where
$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right], \mathrm{X}=\left[\begin{array}{c}
x_1 \\
x_2 \\
\ldots \\
\ldots \\
x_n
\end{array}\right], \mathrm{B}=\left[\begin{array}{c}
b_1 \\
b_2 \\
\ldots \\
\ldots \\
b_n
\end{array}\right]
$
Premultiplying equation $A X=B$ by $A^{-1}$, we get
$
\begin{aligned}
& A^{-1}(A X)=A^{-1} B \Rightarrow\left(A^{-1} A\right) X=A^{-1} B \\
& \Rightarrow I X=A^{-1} B \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$
X=\frac{\operatorname{adj} A}{|A|} B
$
Types of equation:
1. System of equations is non-homogenous:
If $|A| \neq 0$, then the system of equations is consistent and has a unique solution $X=A^{-1} B$
If $|A|=0$ and $(\operatorname{adj} A) \cdot B \neq 0$, then the system of equations is inconsistent and has no solution.
If $|A|=0$ and $(\operatorname{adj} A) \cdot B=0$, then the system of equations is consistent and has infinite number of solutions.
1. System of equations is homogenous:
If $|A| \neq 0$, then the system of equations has only one solution which is the trivial solution.
If $|\mathrm{A}|=0$, then the system of equations has non-trivial solution and it has an infinite number of solutions.
"Stay in the loop. Receive exam news, study resources, and expert advice!"