VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Properties of Determinants - Part 2 is considered one of the most asked concept.
35 Questions around this concept.
Let $A=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$. If $A A^T=I_3$, Then $|p|$ is :
$A=\left[\begin{array}{ccc}e^t & e^{-t} \cos t & e^{-t} \sin t \\ e^t & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^t & 2 e^{-t} \sin t & -2 e^{-t} \cos t\end{array}\right]$ then |A| is :
The value of $\left|\begin{array}{lll}a_1 l_1+b_1 m_1 & a_1 l_2+b_1 m_2 & a_1 l_3+b_1 m_3 \\ a_2 l_1+b_2 m_1 & a_2 l_2+b_2 m_2 & a_2 l_3+b_2 m_3 \\ a_3 l_1+b_3 m_1 & a_3 l_2+b_3 m_2 & a_3 l_3+b_3 m_3\end{array}\right|$ is
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then the value of $\left|\begin{array}{ccc}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is
If $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=A x^3+B x^2+C x+D$ , then B+C is equal to:
Properties of Determinants
Property 1: The value of the determinant remains unchanged if its rows and columns are interchanged.
For example,
Let, $\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$
Expanding along first row, we get
$
\begin{aligned}
& \Delta=\mathrm{a}_1\left|\begin{array}{ll}
b_2 & b_3 \\
c_2 & c_3
\end{array}\right|-\mathrm{a}_2\left|\begin{array}{cc}
b_1 & b_3 \\
c_1 & c_3
\end{array}\right|+\mathrm{a}_3\left|\begin{array}{ll}
b_1 & b_2 \\
c_1 & c_2
\end{array}\right| \\
& \Delta=\mathrm{a}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right)
\end{aligned}
$
By interchanging the rows and columns of $\Delta$, we get the determinant
$
\Delta^{\prime}=\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|
$
Expanding $\Delta^{\prime}$ along first column, we get
$
\begin{aligned}
& \Delta^{\prime}=a_1\left(b_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right) \\
& \Delta=\Delta^{\prime}
\end{aligned}
$
Property 2: If any two rows or two columns of a determinant are interchanged, then sign of determinant changes but the numerical value remains unaltered.
For example
Let, $\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$
Expanding along first row, we get
$
\begin{aligned}
\Delta & =\mathrm{a}_1\left|\begin{array}{ll}
b_2 & b_3 \\
c_2 & c_3
\end{array}\right|-\mathrm{a}_2\left|\begin{array}{ll}
b_1 & b_3 \\
c_1 & c_3
\end{array}\right|+\mathrm{a}_3\left|\begin{array}{ll}
b_1 & b_2 \\
c_1 & c_2
\end{array}\right| \\
\Delta & =\mathrm{a}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right)
\end{aligned}
$
Interchanging first and third rows, the new determinant obtained is given by
$
\Delta^{\prime}=\left|\begin{array}{lll}
c_1 & c_2 & c_3 \\
b_1 & b_2 & b_3 \\
a_1 & a_2 & a_3
\end{array}\right|
$
Expanding along third row, we get
$
\begin{aligned}
\Delta^{\prime} & =\mathrm{a}_1\left(\mathrm{c}_2 \mathrm{~b}_3-\mathrm{c}_3 \mathrm{~b}_2\right)-\mathrm{a}_2\left(\mathrm{c}_1 \mathrm{~b}_3-\mathrm{c}_3 \mathrm{~b}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_2 \mathrm{c}_1-\mathrm{b}_1 \mathrm{c}_2\right) \\
& =-\left[\mathrm{a}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right)\right] \\
\Delta & =-\Delta^{\prime}
\end{aligned}
$
Property 3 If there is an interchange of rows or coloumns twice, then the value of the determinant remains the same.
If $\Delta_n$ is the determinant obtained by n such successive operations, then
$
\Delta_n=\left\{\begin{array}{cc}
-\Delta, & \text { if } \mathrm{n} \text { is odd } \\
\Delta, & \text { if } \mathrm{n} \text { is even }
\end{array}\right.
$
Property 4
If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then the value of the determinant is zero.
For Example,
If we interchange the identical rows (or columns) of the determinant $\Delta$, then by property $2, \Delta$ changes its sign
Let, $\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3\end{array}\right|=-\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3\end{array}\right| \quad$ (interchanging row 1 and row 3) $=-\Delta \quad$ [By property 2]
$
\begin{aligned}
2 \Delta & =0 \\
\Delta & =0
\end{aligned}
$
Property 5
If each element of a row (or a column) of a determinant is multiplied by a constant k , then the value of the determinant is multiplied by k .
For example
Let, $\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$
and $\Delta^{\prime}$ be the determinant obtained by multiplying the elements of the first row by k .
$
\Delta^{\prime}=\left|\begin{array}{ccc}
k a_1 & k a_2 & k a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$
Expanding along first row, we get
$
\begin{aligned}
& \Delta^{\prime}=k \mathrm{ka}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{ka}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{ka}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right) \\
& \quad=\mathrm{k}\left[\mathrm{a}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right)\right] \\
& \Delta^{\prime}=\mathrm{k} \Delta
\end{aligned}
$
Hence,
$
\left|\begin{array}{ccc}
k a_1 & k a_2 & k a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|=\mathrm{k}\left|\begin{array}{ccc}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$
Note:
By this property, we can take out any common factor from any one row or any one column of a given determinant.
If corresponding elements of any two rows (or columns) of a determinant are proportional (in the same ratio), then the determinant value is zero.
Property 6
If every element of some row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants
For example
$
\left|\begin{array}{ccc}
a_1+x & a_2+y & a_3+z \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|=\left|\begin{array}{ccc}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|+\left|\begin{array}{ccc}
x & y & z \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$
Proof:
$
\mathrm{LHS}=\left|\begin{array}{ccc}
a_1+x & a_2+y & a_3+z \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
$
Expanding along first row, we get
$
\begin{aligned}
& \Delta=\left(\mathrm{a}_1+\mathrm{x}\right)\left(\mathrm{b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\left(\mathrm{a}_2+\mathrm{y}\right)\left(\mathrm{b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\left(\mathrm{a}_3+\mathrm{z}\right)\left(\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right) \\
&= \mathrm{a}_1\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{a}_2\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{a}_3\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right) \\
&+\mathrm{x}\left(\mathrm{~b}_2 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_2\right)-\mathrm{y}\left(\mathrm{~b}_1 \mathrm{c}_3-\mathrm{b}_3 \mathrm{c}_1\right)+\mathrm{z}\left(\mathrm{~b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right) \\
&=\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|+\left|\begin{array}{ccc}
x & y & z \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|
\end{aligned}
$
Property 7
If to each element of any row or column of a determinant, the equimultiples of corresponding elements of other rows (or column) are added, then the value of determinant remains the same, i.e., the value of determinant remains same if we apply the operation
$
\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{R}_{\mathrm{i}}+\mathrm{kR}_{\mathrm{j}} \quad \text { or } \quad \mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}+\mathrm{kC}_{\mathrm{j}}
$
Explanation,
Let, $\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$ and $\Delta^{\prime}=\left|\begin{array}{ccc}a_1+k c_1 & a_2+k c_2 & a_3+k c_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$
Here, $\Delta^{\prime}$ is obtained by $R_1 \rightarrow R_1+k R_3$
we can write $\Delta^{\prime}$ as
$
\begin{aligned}
\Delta^{\prime} & =\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|+\left|\begin{array}{ccc}
k c_1 & k c_2 & k c_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|+\mathrm{k}\left|\begin{array}{ccc}
c_1 & c_2 & c_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right| \\
& =\Delta+\mathrm{k} \cdot 0
\end{aligned}
$
hence, $\Delta^{\prime}=\Delta$
Property 8
If each element of one side or the other side or both sides of the principal diagonal of a determinant is zero, then the value of the determinant is the product of the diagonal elements.
I.e.
$
\left|\begin{array}{lll}
a & f & g \\
0 & b & h \\
0 & 0 & c
\end{array}\right|=\left|\begin{array}{lll}
a & 0 & 0 \\
f & b & 0 \\
g & h & c
\end{array}\right|=\left|\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=\mathrm{abc}
$
Property 9
If a determinant D become 0 for $\mathrm{x}=\mathrm{a}$, then $(x-\alpha)$ is a factor of $\Delta$.
For example,
If $\Delta=\left|\begin{array}{ccc}x & x^2 & x^3 \\ 4 & 16 & 64 \\ 5 & 9 & 11\end{array}\right|$
When, $x=4$ the value of $\Delta$ becomes 0
$\because$ at $\mathrm{x}=4, \mathrm{R}_1$ and $\mathrm{R}_2$ are identical.
and at $\mathrm{x}=0, \Delta=0$, because all element of $\mathrm{R}_1$ becomes 0 hence, $(x-0)$ and $(x-4)$ are the factors of $\Delta$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"