JEE Main 2025 Study Material for Physics, Chemistry & Maths

Nature of Roots of Cubic Polynomial - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 3 Questions around this concept.

Solve by difficulty

Let $\alpha, \beta, \gamma,$ be the three roots of the equation $x^3+b x+c=0$. If  $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is

Let f(x) be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real x. Which of the following statements is NOT necessarily true? 

Concepts Covered - 1

Nature of Roots of Cubic Polynomial

Nature of Roots of Cubic Polynomial

Let the cubic polynomial be $f(x)= an x^3+b x^2+c x+d$ and $f(x)=0$ is a cubic equation where $a, b, c$ and $d \in R$ and $a>0$.
Now, $f^{\prime}(x)=3 a x^2+b x+c$
Now, $\quad \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}$
Let $D=4 a^2-12 b=4\left(a^2-3 b\right)$ be the discriminant of the equation $f^{\prime}(x)=0$
Now, we will have the following cases
case 1
If $\mathrm{D}<0 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathrm{R}$.
That means $f(x)$ would be an increasing function of x
Also, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
Also, from the graph, it is clear that $\mathrm{f}(\mathrm{x})$ cut the $\mathrm{x}-$ axis only once.
Clearly $x_0>0$ if $d<0$, and $x_0<0$ if $d>0$
case 2
If $\mathrm{D}>0 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$ would have two real roots, say $\mathrm{x}_1$ and $\mathrm{x}_2$
let $\mathrm{x}_1<\mathrm{x}_2$

$
\begin{array}{lrl}
\Rightarrow & f^{\prime}(x)=3 a\left(x-x_1\right)\left(x-x_2\right) \\
\Rightarrow & f^{\prime}(x)= \begin{cases}f^{\prime}(x)<0, & x \in\left(x_1, x_2\right) \\
f^{\prime}(x)=0, & x \in\left\{x_1, x_2\right\} \\
f^{\prime}(x)>0 & \left(-\infty, x_1\right) \cup\left(x_2, \infty\right)\end{cases}
\end{array}
$
Here, $\mathrm{x}=\mathrm{x}_1$ is point of local maxima and $\mathrm{x}=\mathrm{x}_2$ is point of local minima

case 3
If $\mathrm{D}=0 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_1\right)^2$
When, $x_1$ is root of $f^{\prime}(x)=0$, then $f(x)=a\left(x-x_1\right)^3+C$.
If $\mathrm{C}=0$, then $\mathrm{f}(\mathrm{x})=\mathrm{a}\left(\mathrm{x}-\mathrm{x}_1\right)^3$ has 3 equal roots
if, $\mathrm{C} \neq 0$, then $\mathrm{f}(\mathrm{x})=0$ has one real root.
Thus, the graph of $y=f(x)$ could have five possibilities as shown below:

(i)

(ii)

(iii)

(iv)

(v)

Conclusion:

a. If $f\left(x_1\right) f\left(x_2\right)>0, f(x)=0$ would have just one real root.
b. If $f\left(x_1\right) f\left(x_2\right)<0, f(x)=0$ would have three real and distinct roots.
c. If $f\left(x_1\right) f\left(x_2\right)=0, f(x)=0$ would have three real roots but one of the roots would be repeated.

Study it with Videos

Nature of Roots of Cubic Polynomial

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Nature of Roots of Cubic Polynomial

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 6.28

Line : 9

E-books & Sample Papers

Get Answer to all your questions

Back to top