UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 30th July | Limited seats available in select program
27 Questions around this concept.
$\lim_{x \to \sqrt{3}} \: \ \ \frac{x^{2}-3}{x^{2}+3\sqrt{3}x-12}$
Limit of the form 00 or ∞0 (0 power 0 or infinity power 0)
In such types of questions, generally, we equate the limit with y, then take the logarithm of both sides. After this, we solve the limits, mostly by using the L’Hospital rule.
Let’s go through some of the illustrations to understand how such questions are solved
Illustrations 1
The value of $L=\lim _{x \rightarrow 0^{+}}(1 / x)^{\sin x}$ is :
We have an indeterminate form of the type $\infty^0$
Let, $\mathrm{y}=(1 / \mathrm{x})^{\sin \mathrm{x}}$
Taking $\log$ on both sides, we get :
$
\begin{aligned}
& \ln y=\sin x \cdot \ln \left(\frac{1}{x}\right) \\
\Rightarrow \quad & \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \sin x \cdot \ln \left(\frac{1}{x}\right) \quad[0 \cdot \infty \text { form }]
\end{aligned}
$
Transform it to $\frac{\infty}{\infty}$ form to apply the LH rule.
$
\Rightarrow \quad \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{-\ln x}{1 / \sin x}
$
Apply LH rule
$
\begin{aligned}
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{-1 / x}{-(\cos x) / \sin ^2 x} \\
& \Rightarrow \quad=\quad \lim _{x \rightarrow 0^{+}} \frac{\sin ^2 x}{x \cos x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{x}{\cos x} \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0} \frac{x}{\cos x}=0 \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} y=e^0=1
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"