Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
26 Questions around this concept.
$\lim_{x \to \sqrt{3}} \: \ \ \frac{x^{2}-3}{x^{2}+3\sqrt{3}x-12}$
Limit of the form 00 or ∞0 (0 power 0 or infinity power 0)
In such types of questions, generally, we equate the limit with y, then take the logarithm of both sides. After this, we solve the limits, mostly by using the L’Hospital rule.
Let’s go through some of the illustrations to understand how such questions are solved
Illustrations 1
The value of $L=\lim _{x \rightarrow 0^{+}}(1 / x)^{\sin x}$ is :
We have an indeterminate form of the type $\infty^0$
Let, $\mathrm{y}=(1 / \mathrm{x})^{\sin \mathrm{x}}$
Taking $\log$ on both sides, we get :
$
\begin{aligned}
& \ln y=\sin x \cdot \ln \left(\frac{1}{x}\right) \\
\Rightarrow \quad & \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \sin x \cdot \ln \left(\frac{1}{x}\right) \quad[0 \cdot \infty \text { form }]
\end{aligned}
$
Transform it to $\frac{\infty}{\infty}$ form to apply the LH rule.
$
\Rightarrow \quad \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{-\ln x}{1 / \sin x}
$
Apply LH rule
$
\begin{aligned}
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{-1 / x}{-(\cos x) / \sin ^2 x} \\
& \Rightarrow \quad=\quad \lim _{x \rightarrow 0^{+}} \frac{\sin ^2 x}{x \cos x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{x}{\cos x} \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0} \frac{x}{\cos x}=0 \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} y=e^0=1
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"